People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jones, Cp
University of Bristol
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2022Examination of a Ferritic-Martensitic Steel following Irradiation and High Temperature Water Corrosion
- 2022Investigating the mechanical behaviour of Fukushima MCCI using synchrotron Xray tomography and digital volume correlationcitations
- 2021Investigating the microstructure and mechanical behaviour of simulant "lava-like" fuel containing materials from the Chernobyl reactor unit 4 meltdowncitations
- 2020Effect of crack-like defects on the fracture behaviour of Wire + Arc additively manufactured nickel-base Alloy 718citations
- 2016The crystallographic structure of the air-grown oxide on depleted uranium metalcitations
- 2015Structural deformation of metallic uranium surrounding hydride growth sitescitations
- 2015An investigation into heterogeneity in a single vein-type uranium ore depositcitations
- 2015The effects of metal surface geometry on the formation of uranium hydridecitations
- 2013A surface science study of the initial stages of hydrogen corrosion on uranium metal and the role played by grain microstructurecitations
- 2013Altering the hydriding behaviour of uranium metal by induced oxide penetration around carbo-nitride inclusionscitations
- 2011An improved method to identify grain boundary creep cavitation in 316H austenitic stainless steel
Places of action
Organizations | Location | People |
---|
article
Effect of crack-like defects on the fracture behaviour of Wire + Arc additively manufactured nickel-base Alloy 718
Abstract
The fabrication of large components using a high deposition rate, near-net shape process like Wire + Arc Additive Manufacturing (WAAM) is a promising option for many industries, due to the potential for reduction in material wastage and shorter lead times in comparison to conventional methods. Specialist materials like nickel-base superalloys, which are typically used in high temperature and corrosive environments, are particularly attractive options due to their high raw material costs. Although nickel-base Alloy 718 seems well suited to the process due to its good weldability, process-induced defects can arise from unfavourable deposition conditions and elimination of these defects may not always be possible. In WAAM Alloy 718 deposited under such conditions, crack-like defects with planar morphology and hot cracking characteristics were observed. These defects were observable using conventional non-destructive testing techniques and displayed directionality relating to the deposition path. The fracture behaviour of WAAM Alloy 718 containing these defects was “semi-stable” – a mixture of fracture instability and stable crack extension. The apparent fracture toughness of WAAM Alloy 718 containing these defects was found to be anisotropic, which can be attributed to the interaction of the notched crack with pre-existing defects. WAAM Alloy 718 displayed an apparent fracture toughness comparable to that of wrought Alloy 718 when notched perpendicular to the defects; but only half that of wrought when notched parallel to the defects. Therefore, careful consideration of defect orientation and their effects on mechanical properties is important in assessing the fitness-for-service of WAAM Alloy 718.