People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Remmers, Joris J. C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2023Efficient modelling of ceramic sintering processes:Application to bilayers and membranescitations
- 2023Efficient modelling of ceramic sintering processescitations
- 2021Deformation and failure kinetics of polyvinylidene fluoride: Influence of crystallinitycitations
- 2021Deformation and failure kinetics of polyvinylidene fluoride: Influence of crystallinitycitations
- 2021Multiphysical modeling and optimal control of material properties for photopolymerization processescitations
- 2019Effects of intrinsic properties on fracture nucleation and propagation in swelling hydrogelscitations
- 2019Shear response of 3D non-woven carbon fibre reinforced compositescitations
- 2018Swelling-driven crack propagation in large deformation in ionized hydrogelcitations
- 2018Swelling driven crack propagation in large deformation in ionized hydrogelcitations
- 2018Advances in delamination modeling of metal/polymer systems: continuum aspectscitations
Places of action
Organizations | Location | People |
---|
article
Multiphysical modeling and optimal control of material properties for photopolymerization processes
Abstract
Photopolymerization-based Additive Manufacturing (AM), a technique in which a product is built in a layerwise fashion by local curing of a liquid monomer, is increasingly being adopted by the high-tech sector. Nevertheless, industry still faces several challenges to improve the repeatability of product quality, as recognized by several authorities on AM standardization. It is commonly recognized that there is a need for an in-depth understanding, in-situ monitoring and real-time control of the curing process to work towards end-products of higher quality. This motivates the investigation on closed-loop control of the curing process and the build-up of material properties. This pioneering research contributes to the development of a control-oriented model in the form of a state-space description that describes the multiphysical photopolymerization process and connects curing kinetics, heat flow, strain and stress evolution. This work focuses on one spatial dimension and is extendable to higher dimensions. Moreover, an extension to existing control systems theory is proposed to anticipatively control the process through the quadratic tracking framework. The control strategy is based on sequential linearization of the nonlinear model obtained from multiphysical modelling. This theoretical-numerical approach demonstrates the potential of model-based control of the material property build-up during vat photopolymerization processes such as stereolithography and serves as a proof of principle.