Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Geurts, Bernardus J.

  • Google
  • 3
  • 10
  • 78

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (3/3 displayed)

  • 2020Porous materials additively manufactured at low energy18citations
  • 2020Pulsed mode selective laser melting of porous structures: Structural and thermophysical characterization39citations
  • 2017An investigation of porous structure characteristics of heat pipes made by additive manufacturing21citations

Places of action

Chart of shared publication
Jafari, Davoud
3 / 3 shared
Vaneker, Tom
2 / 5 shared
Römer, Gert-Willem
1 / 15 shared
Cordova, Laura
1 / 12 shared
Ur Rahman, Naveed
1 / 6 shared
Alphen, Koen J. H. Van
1 / 1 shared
Wits, Wessel
3 / 15 shared
Gibson, Ian
2 / 40 shared
Demir, Ali Gökhan
1 / 7 shared
Previtali, Barbara
1 / 29 shared
Chart of publication period
2020
2017

Co-Authors (by relevance)

  • Jafari, Davoud
  • Vaneker, Tom
  • Römer, Gert-Willem
  • Cordova, Laura
  • Ur Rahman, Naveed
  • Alphen, Koen J. H. Van
  • Wits, Wessel
  • Gibson, Ian
  • Demir, Ali Gökhan
  • Previtali, Barbara
OrganizationsLocationPeople

article

Pulsed mode selective laser melting of porous structures: Structural and thermophysical characterization

  • Demir, Ali Gökhan
  • Jafari, Davoud
  • Vaneker, Tom
  • Previtali, Barbara
  • Wits, Wessel
  • Geurts, Bernardus J.
  • Gibson, Ian
Abstract

In this paper, the potential of selective laser melting (SLM) of stainless steel CL 20ES powder was investigated with a focus on controlled fabrication of porous structures with strongly reduced pore sizes, i.e. feature sizes significantly below conventional minimum SLM feature sizes. By controlling laser scan properties interacting with the powder bed directly, porous structures can be generated by selectively sintering powder particles. A wide range of porous samples was manufactured following this strategy, aiming to increase porosity while keeping pore sizes low. The effect of process parameters, including laser power and focal point positioning, was evaluated for a fibre laser operated in pulsed wave (PW) emission mode. The first part of this study focuses on characterization of key porous structure properties, i.e., porosity, average mass density, average pore sizes and structures at microscopic scales. The second part deals with the influence of porosity and pore sizes on thermal and fluid properties, i.e., the effective thermal conductivity (ETC) and wettability. We have quantified the directional dependence (build direction plane and scan direction plane) off the structural and thermophysical properties of porous structures. For a range of porosities and pore sizes, we have observed that porosity and surface morphology influence the thermal properties and contact angle of droplets on the printed surface. Thermal conductivity was measured and the associated analysis was compared with available models and correlations in literature. The average thermal conductivity of fabricated porous structures was determined between 6-14 W/m·K and found to be a function of porosity. Furthermore, the capillary wicking performance of additively manufactured stainless steel porous structures having an average pore radius from 9 to 23 µm was determined.

Topics
  • porous
  • density
  • pore
  • surface
  • stainless steel
  • selective laser melting
  • porosity
  • thermal conductivity
  • sintering