People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Rodrigues, Tiago A.
Instituto de Soldadura e Qualidade
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (20/20 displayed)
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe42Mn28Co10Cr15Si5 metastable high entropy alloycitations
- 2023Microstructure evolution and mechanical properties in a gas tungsten arc welded Fe$_{42}$Mn$_{28}$Co$_{10}$Cr$_{15}$Si$_5$ metastable high entropy alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi2.1 eutectic high entropy alloycitations
- 2022Steel-copper functionally graded material produced by twin-wire and arc additive manufacturing (T-WAAM)citations
- 2022In-situ hot forging direct energy deposition-arc of CuAl8 alloycitations
- 2022Gas tungsten arc welding of as-cast AlCoCrFeNi$_{2.1}$ eutectic high entropy alloycitations
- 2022In-situ hot forging directed energy deposition-arc of CuAl8 alloycitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded material ; Development and characterizationcitations
- 2022Wire and arc additive manufacturing of 316L stainless steel/Inconel 625 functionally graded materialcitations
- 2021Response of ferrite, bainite, martensite, and retained austenite to a fire cycle in a fire-resistant steelcitations
- 2021Wire and Arc Additive Manufacturing of High-Strength Low-Alloy Steelcitations
- 2021Benchmarking of Nondestructive Testing for Additive Manufacturingcitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing : Microstructure and synchrotron X-ray diffraction analysiscitations
- 2021Wire and Arc Additive Manufacturing of High‐Strength Low‐Alloy Steel: Microstructure and Mechanical Propertiescitations
- 2021Effect of heat treatments on 316 stainless steel parts fabricated by wire and arc additive manufacturing: Microstructure and synchrotron X-ray diffraction analysiscitations
- 2020In-situ strengthening of a high strength low alloy steel during Wire and Arc Additive Manufacturing (WAAM)citations
- 2020Hot forging wire and arc additive manufacturing (HF-WAAM)citations
- 2020Effect of milling parameters on HSLA steel parts produced by Wire and Arc Additive Manufacturing (WAAM)citations
- 2019Wire and arc additive manufacturing of HSLA steel: Effect of thermal cycles on microstructure and mechanical propertiescitations
- 2019Large-dimension metal parts produced through laser powder bed fusion
Places of action
Organizations | Location | People |
---|
article
Hot forging wire and arc additive manufacturing (HF-WAAM)
Abstract
In this study, we propose a new variant of wire and arc additive manufacturing (WAAM) based on hot forging. During WAAM, the material is locally forged immediately after deposition, and in-situ viscoplastic deformation occurs at high temperatures. In the subsequent layer deposition, recrystallization of the previous solidification structure occurs that refines the microstructure. Because of its similarity with hot forging, this variant was named hot forging wire and arc additive manufacturing (HF-WAAM). A customized WAAM torch was developed, manufactured, and tested in the production of samples of AISI316L stainless steel. Forging forces of 17 N and 55 N were applied to plastically deform the material. The results showed that this new variant refines the solidification microstructure and reduce texture effects, as determined via high energy synchrotron X-ray diffraction experiments, without interrupting the additive manufacturing process. Mechanical characterization was performed and improvements on both yield strength and ultimate tensile strength were achieved. Furthermore, it was observed that HF-WAAM significantly affects porosity; pores formed during the process were closed by the hot forging process. Because deformation occurs at high temperatures, the forces involved are small, and the WAAM equipment does not have specific requirements with respect to stiffness, thereby allowing the incorporation of this new variant into conventional moving equipment such as multi-axis robots or 3-axis table used in WAAM.