People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tinga, Tiedo
Netherlands Defence Academy
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Corrosion classification through deep learning of electrochemical noise time-frequency transient informationcitations
- 2022Dynamics-based impact identification method for composite structures
- 2020Ultrasonic inline inspection of a cement-based drinking water pipelinecitations
- 2020Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF)citations
- 2020Effects of powder reuse on the microstructure and mechanical behaviour of Al-Mg-Sc-Zr alloy processed by laser powder bed fusion (LPBF)citations
- 2020Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusioncitations
- 2019Revealing the effects of powder reuse for selective laser melting by powder characterizationcitations
- 2019Drying strategies to reduce the formation of hydrogen porosity in Al alloys produced by Additive Manufacturing
- 2019Melt Pool Monitoring for the Laser Powder Bed Fusion Process
- 2019Revealing the Effects of Powder Reuse for Selective Laser Melting by Powder Characterizationcitations
- 2019Towards the development of a hybrid methodology of head checks in railway infrastructure
- 2018Mechanical properties of aluminum alloys produced by Metal Additive Manufacturing
- 2018Utilizing Force-State Mapping for Detecting Fatigue Damage Precursors in Aerospace Applications
- 2018The Detection of Fatigue Damage Accumulation in a Thick Composite Beam Using Acousto Ultrasonics
- 2017Powder Characterization and Optimization for Additive Manufacturing
- 2017Modal strain energy-based structural health monitoring validation on rib stiffened composite panels
- 2016Modal Strain Energy Based Structural Health Monitoring on Rib Stiffened Composite Panels
- 2016Monitoring dynamic stiffness that predicts concrete structure degradation
- 2015Experimental evaluation of vibration-based damage identification methods on a composite aircraft structure with internallymounted piezo diaphragm sensorscitations
- 2014Detection of microbiologically influenced corrosion by electrochemical noise transientscitations
- 2014Aligning PHM, SHM and CBM by understanding the physical system failure behaviour
- 2013The influence of abrasive body dimensions on single asperity wearcitations
- 2013Application of transient analysis using Hilbert spectra of electrochemical noise to the identification of corrosion inhibitioncitations
- 2013Transient analysis through Hilbert spectra of electrochemical noise signals for the identification of localized corrosion of stainless steelcitations
- 2012Investigating the influence of sand particle properties on abrasive wear behaviourcitations
- 2011Application of a multiscale constitutive framework to real gas turbine componentscitations
- 2010Cube slip and non-Schmid effects in single crystal Ni-base superalloyscitations
- 2008Incorporating strain gradient effects in a multiscale constitutive framework for nickel-base superalloyscitations
Places of action
Organizations | Location | People |
---|
article
Measuring the spreadability of pre-treated and moisturized powders for laser powder bed fusion
Abstract
For AM processes—specifically Laser Powder Bed Fusion (L-PBF) processes—powder flowability is essential for the product quality, as these processes are based on a thin layer spreading mechanism. However, the available techniques to measure this flowability do not accurately represent the spreading mechanism. Hence, this paper presents two novel applicator tools specifically designed to test the spreadability of L-PBF powders in thin layer application. The results were checked by running standard tests to analyze the powder morphology, moisture content, chemical composition and flowability using the Hall-flowmeter. For this study, four common L-PBF metal powders were selected: Inconel 718, Ti6Al4V, AlSi10Mg and Scalmalloy. From the as-received state, drying (vacuum and air) and moisturizing treatments were applied to compare four humidity states and investigate the feasibility of pre-treating the powders to remove moisture, which is known to cause problems with flowability, porosity formation and enhanced oxidation. The tests reveal that AlSi10Mg is the most susceptible alloy to moisture and oxygen pick-up, considerably decreasing the spreadability and relative density on the build platform. However, the results also reveal how challenging the direct measurement of moisture levels in metal powders is.