Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dagel, Daryl

  • Google
  • 2
  • 7
  • 92

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2019High Value Pyrometry-To-Defect Correspondence in Laser Powder Bed Fusion of 316L Stainless Steel.citations
  • 2019Linking pyrometry to porosity in additively manufactured metals92citations

Places of action

Chart of shared publication
Jared, Bradley Howell
1 / 6 shared
Mitchell, John A.
2 / 3 shared
Ivanoff, Thomas
1 / 1 shared
Madison, Jonathan D.
2 / 6 shared
Saiz, David J.
1 / 6 shared
Koepke, Joshua Robert
1 / 2 shared
Ivanoff, Thomas A.
1 / 2 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Jared, Bradley Howell
  • Mitchell, John A.
  • Ivanoff, Thomas
  • Madison, Jonathan D.
  • Saiz, David J.
  • Koepke, Joshua Robert
  • Ivanoff, Thomas A.
OrganizationsLocationPeople

article

Linking pyrometry to porosity in additively manufactured metals

  • Mitchell, John A.
  • Madison, Jonathan D.
  • Ivanoff, Thomas A.
  • Dagel, Daryl
Abstract

Porosity in additively manufactured metals can reduce material strength which is generally considered undesirable. Although studies have shown relationships between process parameters and porosity, monitoring strategies for defect detection and pore formation are still needed. In this paper, instantaneous anomalous conditions are detected in-situ via pyrometry during laser powder bed fusion additive manufacturing and correlated with voids observed using post-build micro-computed tomography. Large two-color pyrometry data sets were used to estimate instantaneous temperatures, melt pool orientations and aspect ratios. Machine learning algorithms were then applied to processed pyrometry data to detect outlier images and conditions. It is shown that melt pool outliers are good predictors of voids observed post-build. With this approach, real time process monitoring can be incorporated into systems to detect defect and void formation. Alternatively, using the methodology presented here, pyrometry data can be post processed for porosity assessment.

Topics
  • impedance spectroscopy
  • pore
  • melt
  • tomography
  • strength
  • selective laser melting
  • void
  • porosity
  • machine learning