People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Xi, Jiawei
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (1/1 displayed)
Places of action
Organizations | Location | People |
---|
article
Influence of solidification cell structure on the martensitic transformation in additively manufactured steels
Abstract
<p>A key feature when using martensitic steels is the proportion of retained austenite present in the final component. Martensitic steels manufactured by laser powder-bed fusion (LPBF) have been shown to have more retained austenite than when conventionally manufactured. The LPBF microstructure is characterised by small grains containing ultrafine solidification cells (<1 μm). This study shows that the solidification cells can fully suppress thermal martensite. The retained austenite is highly metastable, and will readily transform to deformation martensite either in-build from thermal strain or post-build from deformation. This raises concerns around sample preparation methods causing incorrect phase quantification in LPBF-built martensitic steels.</p>