People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Koptyug, A.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (6/6 displayed)
- 2023Trapped powder removal from sheet-based porous structures based on triply periodic minimal surfaces fabricated by electron beam powder bed fusioncitations
- 2023Geometrical features and mechanical properties of the sheet-based gyroid scaffolds with functionally graded porosity manufactured by electron beam meltingcitations
- 2021Functionalization of additive-manufactured Ti6Al4V scaffolds with poly(allylamine hydrochloride)/poly(styrene sulfonate) bilayer microcapsule system containing dexamethasonecitations
- 2020In situ synthesis of a binary Ti–10at% Nb alloy by electron beam melting using a mixture of elemental niobium and titanium powderscitations
- 2020The impact of post manufacturing treatment of functionally graded Ti6Al4V scaffolds on their surface morphology and mechanical strengthcitations
- 2019Production of net-shape Mn-Al permanent magnets by electron beam meltingcitations
Places of action
Organizations | Location | People |
---|
article
Production of net-shape Mn-Al permanent magnets by electron beam melting
Abstract
<p>The main goal of this work is the adoption of additive manufacturing for the production of inexpensive rare-earth free MnAl-based permanent magnets. The use of more advanced binder-free additive manufacturing technique such as Electron Beam Melting (EBM) allows obtaining fully-dense magnetic materials with advanced topology and complex shapes. We focus on the feasibility of controlling the phase formation in additively manufactured Mn-Al alloys by employing post-manufacturing heat treatment. The as-manufactured EBM samples contain 8% of the desired ferromagnetic τ-MnAl phase. After the optimized annealing treatment, the content of the τ-phase was increased to 90%. This sample has a coercivity value of 0.15 T, which is also the maximum achieved in conventionally produced binary MnAl magnets. Moreover, the EBM samples are fully dense and have the same density as the samples produced by conventional melting density.</p>