Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Lopez, Juan Cuellar

  • Google
  • 1
  • 3
  • 137

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2019A review of the fatigue behavior of 3D printed polymers137citations

Places of action

Chart of shared publication
Zadpoor, Amir, A.
1 / 38 shared
Safai, Lauren
1 / 1 shared
Smit, Gerwin
1 / 3 shared
Chart of publication period
2019

Co-Authors (by relevance)

  • Zadpoor, Amir, A.
  • Safai, Lauren
  • Smit, Gerwin
OrganizationsLocationPeople

document

A review of the fatigue behavior of 3D printed polymers

  • Zadpoor, Amir, A.
  • Safai, Lauren
  • Lopez, Juan Cuellar
  • Smit, Gerwin
Abstract

<p>As additive manufacturing of polymeric materials is becoming more prevalent throughout industry and research communities, it is important to ensure that 3D printed parts are able to withstand mechanical and environmental stresses that occur when in use, including the sub-critical cyclic loads that could result in fatigue crack propagation and material failure. There has so far been only limited research on the fatigue behavior of 3D printed polymers to determine which printing or material parameters result in the most favorable fatigue behavior. To better understand the effects of the printing technique, printing materials, and printing parameters on the fatigue behavior of 3D printed materials, we present here an overview of the data currently available in the literature including fatigue testing protocols and a quantitative analysis of the available fatigue data per type of the AM technology. The results of our literature review clearly show that, due to the synergism between printing parameters and the properties of the printed material, it is challenging to determine the best combination of variables for fatigue resistance. There is therefore a need for more experimental and computational fatigue studies to understand how the above-mentioned material and printing parameters affect the fatigue behavior.</p>

Topics
  • impedance spectroscopy
  • polymer
  • crack
  • fatigue
  • additive manufacturing
  • fatigue testing
  • quantitative determination method