People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Aremu, Adedeji
Coventry University
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (12/12 displayed)
- 2023Mechanical characterisation and crashworthiness performance of additively manufactured polymer-based honeycomb structures under in-plane quasi-static loadingcitations
- 2023Finite element model of fiber volume effect on the mechanical performance of additively manufactured carbon fiber reinforced plastic compositescitations
- 2022Material design factors in the additive manufacturing of Carbon Fiber Reinforced Plastic Compositescitations
- 2019Using machine learning to aid in the parameter optimisation process for metal-based additive manufacturingcitations
- 2018Insights into the mechanical properties of several triply periodic minimal surface lattice structures made by polymer additive manufacturingcitations
- 2017Compressive failure modes and energy absorption in additively manufactured double gyroid latticescitations
- 2017Non-linear Contact Analysis of Self-Supporting Lattice
- 2017Insights into the mechanical properties of several triplyperiodic minimal surface lattice structures made by polymeradditive manufacturingcitations
- 2016A mechanical property evaluation of graded density Al-Si10-Mg lattice structures manufactured by selective laser meltingcitations
- 2016Effects of Net and Solid Skins on Self-Supporting Lattice Structures
- 2014The BCC unit cell for latticed SLM parts; mechanical properties as a function of cell size
- 2014A Comparative Finite Element Study of Cubic Unit Cells for Selective Laser Melting
Places of action
Organizations | Location | People |
---|
article
Compressive failure modes and energy absorption in additively manufactured double gyroid lattices
Abstract
Lattice structures are excellent candidates for lightweight, energy absorbing applications such as personal protective equipment. In this paper we explore several important aspects of lattice design and production by metal additive manufacturing, including the choice of cell size and the application of a post-manufacture heat treatment. Key results include the characterisation of several failure modes in double gyroid lattices made of Al-Si10-Mg, the elimination of brittle fracture and low-strain failure by the application of a heat treatment, and the calculation of specific energy absorption under compression deformation (16 × 106 J m−3 up to 50% strain). These results demonstrate the suitability of double gyroid lattices for energy absorbing applications, and will enable the design and manufacture of more efficient lightweight parts in the future.