Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Tam, Kyle

  • Google
  • 1
  • 5
  • 29

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Process planning for additive manufacturing of geometries with variable overhang angles using a robotic laser directed energy deposition system29citations

Places of action

Chart of shared publication
Frikel, German
1 / 1 shared
Zimny, Mark
1 / 2 shared
Toyserkani, Ehsan
1 / 10 shared
Narayanan, Jinoop Arackal
1 / 9 shared
Kaji, Farzaneh
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Frikel, German
  • Zimny, Mark
  • Toyserkani, Ehsan
  • Narayanan, Jinoop Arackal
  • Kaji, Farzaneh
OrganizationsLocationPeople

article

Process planning for additive manufacturing of geometries with variable overhang angles using a robotic laser directed energy deposition system

  • Frikel, German
  • Zimny, Mark
  • Toyserkani, Ehsan
  • Narayanan, Jinoop Arackal
  • Kaji, Farzaneh
  • Tam, Kyle
Abstract

<p>In the present work, a novel Laser Directed Energy Deposition (LDED) process planning methodology is proposed to build a dome structure with variable overhang angles. Overhang structures with different overhang angles were built where the maximum angle of 35° can be used to build overhang structures without the process and structure compromise. The thin-wall hemispherical dome built using the developed methodology shows the maximum deviation of 2% with respect to the diameter of the original CAD model data. The study paves a way for building high-value, lightweight thin-walled structures with complex cylindrical-based shape (e.g., storage tanks, nozzles, combustion chambers) for engineering applications.</p>

Topics
  • Deposition
  • impedance spectroscopy
  • combustion
  • directed energy deposition
  • collision-induced dissociation