Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Dong, J.

  • Google
  • 12
  • 59
  • 194

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (12/12 displayed)

  • 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes25citations
  • 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes25citations
  • 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds29citations
  • 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds29citations
  • 2022Extrusion-based additive manufacturing of Mg-Zn/bioceramic composite scaffolds36citations
  • 2021Flash sintering of zircon: rapid consolidation of an ultrahigh bandgap ceramic6citations
  • 2021Revealing the Dynamic Transformation of Austenite to Bainite during Uniaxial Warm Compression through In-Situ Synchrotron X-ray Diffraction4citations
  • 2020Study of Microstructural Development of Bainitic Steel using Eddy Current and Synchrotron XRD in-situ Measurement Techniques during Thermomechanical Treatment8citations
  • 2020Flash cold sintering: Combining water and electricity31citations
  • 2018Analysis of early damage in a woven carbon fiber reinforced composite by means of Coda Wave Interferometry (CWI) and terahertz imaging.citations
  • 2017In-situ-Untersuchung von Randschichten während des Gasnitrierens mittels Röntgendiffraktometrie und photothermischer Radiometriecitations
  • 2010Gasnitrocarburieren von Stählen zur Erzeugung dicker und porenarmer Verbindungsschichten für die Mikrozerspanung mit Diamantwerkzeugen1citations

Places of action

Chart of shared publication
Zadpoor, Amir, A.
2 / 38 shared
Mol, Arjan
2 / 64 shared
Klimopoulou, Maria
1 / 4 shared
Putra, Niko Eka
1 / 8 shared
Leeflang, M. A.
5 / 25 shared
Chang, J.
3 / 15 shared
Fratila-Apachitei, Lidy
2 / 11 shared
Zhou, Jie
2 / 31 shared
Taheri, Peyman
2 / 16 shared
Huan, Z.
3 / 6 shared
Klimopoulou, M.
1 / 2 shared
Zadpoor, A. A.
3 / 33 shared
Putra, N. E.
2 / 3 shared
Zhou, J.
3 / 38 shared
Taheri, P.
2 / 17 shared
Mol, J. M. C.
2 / 93 shared
Fratila-Apachitei, E. L.
3 / 7 shared
Tümer, N.
2 / 5 shared
Tumer, Nazli
1 / 3 shared
Lin, P.
1 / 2 shared
M., Sglavo V.
2 / 14 shared
Grasso, S.
2 / 18 shared
M., Martinez J.
1 / 1 shared
Biesuz, M.
2 / 23 shared
M., Rendtorff N.
1 / 1 shared
Suarez, G.
1 / 1 shared
-T., Lin H.
1 / 1 shared
Gauna, M.
1 / 1 shared
Meyer, H.
1 / 14 shared
Reguly, A.
1 / 11 shared
Epp, J.
3 / 7 shared
Roelofs, H.
1 / 9 shared
Bevilaqua, W. L.
1 / 1 shared
Rocha, A. S.
1 / 1 shared
Da Silva Rocha, A.
1 / 3 shared
Skalecki, M.
1 / 2 shared
Hatwig, R.
1 / 1 shared
Bevilaqua, W.
1 / 1 shared
Zoch, H.
1 / 1 shared
Stark, A.
1 / 102 shared
Deng, H.
1 / 18 shared
Kermani, M.
1 / 1 shared
Chiappini, A.
1 / 12 shared
Bortolotti, M.
1 / 5 shared
Hu, C.
1 / 9 shared
J., Reece M.
1 / 3 shared
Locquet, Alexandre
1 / 10 shared
Chehami, Lynda
1 / 9 shared
David, Citrin
1 / 1 shared
Meraghni, Fodil
1 / 109 shared
Pomarede, Pascal
1 / 7 shared
Declercq, Nico
1 / 3 shared
Fischer, A.
1 / 36 shared
Prekel, H.
1 / 1 shared
Dethlefs, M.
1 / 1 shared
Hoja, Stefanie
1 / 16 shared
Hoffmann, F.
1 / 9 shared
Zoch, H.-W.
1 / 13 shared
Klümper-Westkamp, H.
1 / 7 shared
Chart of publication period
2023
2022
2021
2020
2018
2017
2010

Co-Authors (by relevance)

  • Zadpoor, Amir, A.
  • Mol, Arjan
  • Klimopoulou, Maria
  • Putra, Niko Eka
  • Leeflang, M. A.
  • Chang, J.
  • Fratila-Apachitei, Lidy
  • Zhou, Jie
  • Taheri, Peyman
  • Huan, Z.
  • Klimopoulou, M.
  • Zadpoor, A. A.
  • Putra, N. E.
  • Zhou, J.
  • Taheri, P.
  • Mol, J. M. C.
  • Fratila-Apachitei, E. L.
  • Tümer, N.
  • Tumer, Nazli
  • Lin, P.
  • M., Sglavo V.
  • Grasso, S.
  • M., Martinez J.
  • Biesuz, M.
  • M., Rendtorff N.
  • Suarez, G.
  • -T., Lin H.
  • Gauna, M.
  • Meyer, H.
  • Reguly, A.
  • Epp, J.
  • Roelofs, H.
  • Bevilaqua, W. L.
  • Rocha, A. S.
  • Da Silva Rocha, A.
  • Skalecki, M.
  • Hatwig, R.
  • Bevilaqua, W.
  • Zoch, H.
  • Stark, A.
  • Deng, H.
  • Kermani, M.
  • Chiappini, A.
  • Bortolotti, M.
  • Hu, C.
  • J., Reece M.
  • Locquet, Alexandre
  • Chehami, Lynda
  • David, Citrin
  • Meraghni, Fodil
  • Pomarede, Pascal
  • Declercq, Nico
  • Fischer, A.
  • Prekel, H.
  • Dethlefs, M.
  • Hoja, Stefanie
  • Hoffmann, F.
  • Zoch, H.-W.
  • Klümper-Westkamp, H.
OrganizationsLocationPeople

article

Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes

  • Zadpoor, Amir, A.
  • Mol, Arjan
  • Dong, J.
  • Klimopoulou, Maria
  • Putra, Niko Eka
  • Leeflang, M. A.
  • Chang, J.
  • Fratila-Apachitei, Lidy
  • Zhou, Jie
  • Taheri, Peyman
  • Huan, Z.
Abstract

<p>The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges have been overcome. Herein, we present porous FeMn-akermanite composite scaffolds fabricated by extrusion-based 3D printing to address the unmet clinical needs associated with Fe-based biomaterials for bone regeneration, including low biodegradation rate, MRI-incompatibility, mechanical properties, and limited bioactivity. In this research, we developed inks containing Fe, 35 wt% Mn, and 20 or 30 vol% akermanite powder mixtures. 3D printing was optimized together with the debinding and sintering steps to obtain scaffolds with interconnected porosity of 69%. The Fe-matrix in the composites contained the γ-FeMn phase as well as nesosilicate phases. The former made the composites paramagnetic and, thus, MRI-friendly. The in vitro biodegradation rates of the composites with 20 and 30 vol% akermanite were respectively 0.24 and 0.27 mm/y, falling within the ideal range of biodegradation rates for bone substitution. The yield strengths of the porous composites stayed within the range of the values of the trabecular bone, despite in vitro biodegradation for 28 d. All the composite scaffolds favored the adhesion, proliferation, and osteogenic differentiation of preosteoblasts, as revealed by Runx2 assay. Moreover, osteopontin was detected in the extracellular matrix of cells on the scaffolds. Altogether, these results demonstrate the remarkable potential of these composites in fulfilling the requirements of porous biodegradable bone substitutes, motivating future in vivo research. Statement of significance: We developed FeMn-akermanite composite scaffolds by taking advantage of the multi-material capacity of extrusion-based 3D printing. Our results demonstrated that the FeMn-akermanite scaffolds showed an exceptional performance in fulfilling all the requirements for bone substitution in vitro, i.e., a sufficient biodegradation rate, having mechanical properties in the range of trabecular bone even after 4 weeks biodegradation, paramagnetic, cytocompatible and most importantly osteogenic. Our results encourage further research on Fe-based bone implants in in vivo.</p>

Topics
  • porous
  • phase
  • extrusion
  • strength
  • composite
  • yield strength
  • porosity
  • biomaterials
  • additive manufacturing
  • sintering
  • bioactivity