Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Taheri, Peyman

  • Google
  • 16
  • 61
  • 957

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes25citations
  • 2023Biodegradation of Oxide Nanoparticles in Apoferritin Protein Media: A Systematic Electrochemical Approach4citations
  • 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds29citations
  • 2022Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration39citations
  • 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron14citations
  • 2021Nanoscopic and in-situ cross-sectional observations of Li-based conversion coating formation using liquid-phase TEM16citations
  • 2021Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds35citations
  • 2021Extrusion-based 3D printed biodegradable porous iron79citations
  • 2021Simplistic correlations between molecular electronic properties and inhibition efficiencies: Do they really exist?143citations
  • 2020In-situ nanoscopic observations of dealloying-driven local corrosion from surface initiation to in-depth propagation84citations
  • 2020Additively manufactured biodegradable porous zinc135citations
  • 2019Self-healing epoxy nanocomposite coatings based on dual-encapsulation of nano-carbon hollow spheres with film-forming resin and curing agent70citations
  • 2019Mechanical and Corrosion Protection Properties of a Smart Composite Epoxy Coating with Dual-Encapsulated Epoxy/Polyamine in Carbon Nanospheres65citations
  • 2018Fabrication and characterization of graphene-based carbon hollow spheres for encapsulation of organic corrosion inhibitors120citations
  • 2018Enhanced corrosion protection of mild steel by the synergetic effect of zinc aluminum polyphosphate and 2-mercaptobenzimidazole inhibitors incorporated in epoxy-polyamide coatings88citations
  • 2017Improved corrosion resistance of aluminum brazing sheet by a post-brazing heat treatment11citations

Places of action

Chart of shared publication
Zadpoor, Amir, A.
7 / 38 shared
Mol, Arjan
14 / 64 shared
Dong, J.
2 / 12 shared
Klimopoulou, Maria
2 / 4 shared
Putra, Niko Eka
5 / 8 shared
Leeflang, M. A.
6 / 25 shared
Chang, J.
1 / 15 shared
Fratila-Apachitei, Lidy
6 / 11 shared
Zhou, Jie
7 / 31 shared
Huan, Z.
1 / 6 shared
Lekka, Maria
1 / 20 shared
Chen, Xiangzhong
1 / 5 shared
Pané, Salvador
1 / 15 shared
Fedrizzi, Lorenzo
1 / 30 shared
Mol, Johannes M. C.
1 / 12 shared
Gonzalezgarcia, Yaiza
1 / 1 shared
Rahimi, Ehsan
1 / 9 shared
Kim, Donghoon
1 / 3 shared
Sanchisgual, Roger
1 / 2 shared
Offoiach, Ruben
1 / 4 shared
Tumer, Nazli
1 / 3 shared
Díaz-Payno, Pedro J.
1 / 4 shared
Borg, K. G. N.
1 / 2 shared
Tigrine, A.
1 / 1 shared
Aksakal, S.
1 / 1 shared
Rosa, V. R. De La
1 / 1 shared
Tichelaar, F. D.
2 / 43 shared
Kosari, Ali
3 / 14 shared
Terryn, Herman
2 / 124 shared
Visser, P.
2 / 25 shared
Zandbergen, H.
2 / 8 shared
Minneboo, M.
1 / 3 shared
Lozinsek, Matic
1 / 1 shared
Losada-Perez, Patricia
1 / 5 shared
Stavber, Stojan
1 / 1 shared
Renner, Frank
1 / 14 shared
Kokalj, Anton
1 / 9 shared
Neupane, Shova
1 / 8 shared
Xie, Chenyang
1 / 5 shared
Milosev, Ingrid
1 / 1 shared
Crespo, Daniel
1 / 8 shared
Kapun, Barbara
1 / 3 shared
Jahr, Holger
1 / 6 shared
Lietaert, K.
1 / 9 shared
Pavanram, P.
1 / 6 shared
Li, Wei
1 / 6 shared
San, H.
1 / 1 shared
Gonzalez-Garcia, Yaiza
1 / 27 shared
Mahdavian, M.
3 / 6 shared
Ramazani, A.
1 / 3 shared
Haddadi, S. A.
3 / 4 shared
Ramazani, A. S. A.
1 / 2 shared
Ramazani, S. A. A.
1 / 2 shared
Mirzakhanzadeh, Z.
1 / 2 shared
Moayed, M. H.
1 / 3 shared
Naderi, R.
1 / 2 shared
Norouzi-Afshar, Farid
1 / 2 shared
Sababi, Majiid
1 / 1 shared
Tichelaar, Frans D.
1 / 6 shared
Mol, Johannes
1 / 6 shared
Terryn, H.
1 / 27 shared
Chart of publication period
2023
2022
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Zadpoor, Amir, A.
  • Mol, Arjan
  • Dong, J.
  • Klimopoulou, Maria
  • Putra, Niko Eka
  • Leeflang, M. A.
  • Chang, J.
  • Fratila-Apachitei, Lidy
  • Zhou, Jie
  • Huan, Z.
  • Lekka, Maria
  • Chen, Xiangzhong
  • Pané, Salvador
  • Fedrizzi, Lorenzo
  • Mol, Johannes M. C.
  • Gonzalezgarcia, Yaiza
  • Rahimi, Ehsan
  • Kim, Donghoon
  • Sanchisgual, Roger
  • Offoiach, Ruben
  • Tumer, Nazli
  • Díaz-Payno, Pedro J.
  • Borg, K. G. N.
  • Tigrine, A.
  • Aksakal, S.
  • Rosa, V. R. De La
  • Tichelaar, F. D.
  • Kosari, Ali
  • Terryn, Herman
  • Visser, P.
  • Zandbergen, H.
  • Minneboo, M.
  • Lozinsek, Matic
  • Losada-Perez, Patricia
  • Stavber, Stojan
  • Renner, Frank
  • Kokalj, Anton
  • Neupane, Shova
  • Xie, Chenyang
  • Milosev, Ingrid
  • Crespo, Daniel
  • Kapun, Barbara
  • Jahr, Holger
  • Lietaert, K.
  • Pavanram, P.
  • Li, Wei
  • San, H.
  • Gonzalez-Garcia, Yaiza
  • Mahdavian, M.
  • Ramazani, A.
  • Haddadi, S. A.
  • Ramazani, A. S. A.
  • Ramazani, S. A. A.
  • Mirzakhanzadeh, Z.
  • Moayed, M. H.
  • Naderi, R.
  • Norouzi-Afshar, Farid
  • Sababi, Majiid
  • Tichelaar, Frans D.
  • Mol, Johannes
  • Terryn, H.
OrganizationsLocationPeople

article

Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes

  • Zadpoor, Amir, A.
  • Mol, Arjan
  • Dong, J.
  • Klimopoulou, Maria
  • Putra, Niko Eka
  • Leeflang, M. A.
  • Chang, J.
  • Fratila-Apachitei, Lidy
  • Zhou, Jie
  • Taheri, Peyman
  • Huan, Z.
Abstract

<p>The development of biodegradable Fe-based bone implants has rapidly progressed in recent years. Most of the challenges encountered in developing such implants have been tackled individually or in combination using additive manufacturing technologies. Yet not all the challenges have been overcome. Herein, we present porous FeMn-akermanite composite scaffolds fabricated by extrusion-based 3D printing to address the unmet clinical needs associated with Fe-based biomaterials for bone regeneration, including low biodegradation rate, MRI-incompatibility, mechanical properties, and limited bioactivity. In this research, we developed inks containing Fe, 35 wt% Mn, and 20 or 30 vol% akermanite powder mixtures. 3D printing was optimized together with the debinding and sintering steps to obtain scaffolds with interconnected porosity of 69%. The Fe-matrix in the composites contained the γ-FeMn phase as well as nesosilicate phases. The former made the composites paramagnetic and, thus, MRI-friendly. The in vitro biodegradation rates of the composites with 20 and 30 vol% akermanite were respectively 0.24 and 0.27 mm/y, falling within the ideal range of biodegradation rates for bone substitution. The yield strengths of the porous composites stayed within the range of the values of the trabecular bone, despite in vitro biodegradation for 28 d. All the composite scaffolds favored the adhesion, proliferation, and osteogenic differentiation of preosteoblasts, as revealed by Runx2 assay. Moreover, osteopontin was detected in the extracellular matrix of cells on the scaffolds. Altogether, these results demonstrate the remarkable potential of these composites in fulfilling the requirements of porous biodegradable bone substitutes, motivating future in vivo research. Statement of significance: We developed FeMn-akermanite composite scaffolds by taking advantage of the multi-material capacity of extrusion-based 3D printing. Our results demonstrated that the FeMn-akermanite scaffolds showed an exceptional performance in fulfilling all the requirements for bone substitution in vitro, i.e., a sufficient biodegradation rate, having mechanical properties in the range of trabecular bone even after 4 weeks biodegradation, paramagnetic, cytocompatible and most importantly osteogenic. Our results encourage further research on Fe-based bone implants in in vivo.</p>

Topics
  • porous
  • phase
  • extrusion
  • strength
  • composite
  • yield strength
  • porosity
  • biomaterials
  • additive manufacturing
  • sintering
  • bioactivity