Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Püllmann, Denise

  • Google
  • 1
  • 4
  • 18

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2022Correlating the microstructural architecture and macrostructural behaviour of the brain.18citations

Places of action

Chart of shared publication
Hoppstädter, Mayra
1 / 1 shared
Seydewitz, Robert
1 / 1 shared
Kuhl, Ellen
1 / 7 shared
Böl, Markus
1 / 2 shared
Chart of publication period
2022

Co-Authors (by relevance)

  • Hoppstädter, Mayra
  • Seydewitz, Robert
  • Kuhl, Ellen
  • Böl, Markus
OrganizationsLocationPeople

article

Correlating the microstructural architecture and macrostructural behaviour of the brain.

  • Püllmann, Denise
  • Hoppstädter, Mayra
  • Seydewitz, Robert
  • Kuhl, Ellen
  • Böl, Markus
Abstract

The computational simulation of pathological conditions and surgical procedures, for example the removal of cancerous tissue, can contribute crucially to the future of medicine. Especially for brain surgery, these methods can be important, as the ultra-soft tissue controls vital functions of the body. However, the microstructural interactions and their effects on macroscopic material properties remain incompletely understood. Therefore, we investigated the mechanical behaviour of brain tissue under three different deformation modes, axial tension, compression, and semi-confined compression, in different anatomical regions, and for varying axon orientation. In addition, we characterised the underlying microstructure in terms of myelin, cells, glial cells and neuron area fraction, and density. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction (Spearman's correlation coefficient of rs=0.40 and rs=0.33), whereas the compressive shear modulus decreases with increasing glial cell area (rs=-0.33). Our study finds that tissue non-linearity significantly depends on the myelin area fraction (rs=0.47), cell density (rs=0.41) and glial cell area (rs=0.49). Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain. STATEMENT OF SIGNIFICANCE: Within this article, we investigate the mechanical behaviour of brain tissue under three different deformation modes, in different anatomical regions, and for varying axon orientation. Further, we characterise the underlying microstructure in terms of various constituents. The correlation of these quantities with the material parameters of the anisotropic Ogden model reveals a decrease in shear modulus with increasing myelin area fraction. Strikingly, the tensile shear modulus correlates positively with cell and neuronal area fraction, whereas the compressive shear modulus decreases with increasing glial cell area. Our study finds that tissue non-linearity significantly depends on the myelin area fraction, cell density, and glial cell area. Our results provide an important step towards understanding the micromechanical load transfer that leads to the non-linear macromechanical behaviour of the brain.

Topics
  • density
  • microstructure
  • simulation
  • anisotropic