Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Vinzons, Joan Lace U.

  • Google
  • 1
  • 7
  • 6

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (1/1 displayed)

  • 2023Design and evaluation of 3D-printed Sr-HT-Gahnite bioceramic for FDA regulatory submission6citations

Places of action

Chart of shared publication
Sadeghpour, Ameneh
1 / 1 shared
Entezari, Ali
1 / 4 shared
Newsom, Ellen T.
1 / 1 shared
Zreiqat, Hala
1 / 16 shared
Chon, Daniel
1 / 1 shared
Dunstan, Colin R.
1 / 6 shared
Stanford, Ralph E.
1 / 1 shared
Chart of publication period
2023

Co-Authors (by relevance)

  • Sadeghpour, Ameneh
  • Entezari, Ali
  • Newsom, Ellen T.
  • Zreiqat, Hala
  • Chon, Daniel
  • Dunstan, Colin R.
  • Stanford, Ralph E.
OrganizationsLocationPeople

article

Design and evaluation of 3D-printed Sr-HT-Gahnite bioceramic for FDA regulatory submission

  • Sadeghpour, Ameneh
  • Entezari, Ali
  • Newsom, Ellen T.
  • Zreiqat, Hala
  • Chon, Daniel
  • Vinzons, Joan Lace U.
  • Dunstan, Colin R.
  • Stanford, Ralph E.
Abstract

<p>There is an unmet clinical need for a spinal fusion implant material that recapitulates the biological and mechanical performance of natural bone. We have developed a bioceramic, Sr-HT-Gahnite, which has been identified as a potential fusion device material. This material has the capacity to transform the future of the global interbody devices market, with follow on social, economic, and environmental benefits, rooted in its remarkable combination of mechanical properties and bioactivity. In this study, and in line with FDA requirements, the in vivo preclinical systemic biological safety of a Sr-HT-Gahnite interbody fusion device is assessed over 26 weeks in sheep under good laboratory practice (GLP). Following the in-life phase, animals are assessed for systemic biological effects via blood haematology and clinical biochemistry, strontium dosage analysis in the blood and wool, and histopathology examination of the distant organs including adrenals, brain, heart, kidneys, liver, lungs and bronchi, skeletal muscle, spinal nerves close to the implanted sites, ovaries, and draining lymph nodes. Our results show that no major changes in blood haematology or biochemistry parameters are observed, no systemic distribution of strontium to the blood and wool, and no macroscopic or histopathological abnormalities in the distant organs when Sr-HT-Gahnite was implanted, compared to baseline and control values. Together, these results indicate the systemic safety of the Sr-HT-Gahnite interbody fusion device. The results of this study extend to the systemic safety of other Sr-HT-Gahnite implanted medical devices in contact with bone or tissue, of similar size and manufactured using the described processes. Statement of significance: This paper is considered original and innovative as it is the first that thoroughly reports the systemic biological safety of previously undescribed bioceramic material, Sr-HT-Gahnite. The study has been performed under good laboratory practice, in line with FDA requirements for assessment of a new interbody fusion device, making the results broadly applicable to the translation of sheep models to the human cervical spine; and also the translation of Sr-HT-Gahnite as a biomaterial for use in additional applications. We expect this study to be of broad interest to the readership of Acta Biomaterilia. Its findings are directly applicable to researchers and clinicians working in bone repair and the development of synthetic biomaterials.</p>

Topics
  • impedance spectroscopy
  • phase
  • Strontium
  • biomaterials
  • bioactivity