Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Fratila-Apachitei, Lidy

  • Google
  • 11
  • 41
  • 391

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (11/11 displayed)

  • 2024On-Demand Magnetically-Activated Drug Delivery from Additively Manufactured Porous Bone Implants to Tackle Antibiotic-Resistant Infections2citations
  • 20244D printed shape-shifting biomaterials for tissue engineering and regenerative medicine applications35citations
  • 2024Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratio13citations
  • 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes25citations
  • 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds29citations
  • 2022Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration39citations
  • 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron14citations
  • 2021Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds35citations
  • 2021Extrusion-based 3D printed biodegradable porous iron79citations
  • 2021Mechanical characterization of nanopillars by atomic force microscopy10citations
  • 2020Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing110citations

Places of action

Chart of shared publication
Zadpoor, Amir, A.
10 / 38 shared
Apachitei, Iulian
1 / 2 shared
Šalandová, Monika
1 / 1 shared
Klimopoulou, Maria
4 / 4 shared
Leeflang, Marius Alexander
1 / 1 shared
Kalogeropoulou, Maria
1 / 2 shared
Zadpoor, Amir Abbas
1 / 1 shared
Mirzaali, Mohammad J.
1 / 16 shared
Díaz-Payno, Pedro J.
2 / 4 shared
Osch, Gerjo J. V. M. Van
1 / 1 shared
Yarali, Ebrahim
1 / 7 shared
Boukany, Pouyan
1 / 1 shared
David, Kristen
1 / 1 shared
Staufer, Urs
1 / 5 shared
Mirzaali, Mohammad, J.
3 / 24 shared
Accardo, Angelo
1 / 9 shared
Mol, Arjan
6 / 64 shared
Dong, J.
2 / 12 shared
Putra, Niko Eka
5 / 8 shared
Leeflang, M. A.
5 / 25 shared
Chang, J.
1 / 15 shared
Zhou, Jie
6 / 31 shared
Taheri, Peyman
6 / 16 shared
Huan, Z.
1 / 6 shared
Tumer, Nazli
1 / 3 shared
Borg, K. G. N.
1 / 2 shared
Tigrine, A.
1 / 1 shared
Aksakal, S.
1 / 1 shared
Rosa, V. R. De La
1 / 1 shared
Minneboo, M.
1 / 3 shared
Hagen, Cornelis Wouter
1 / 7 shared
Nouri-Goushki, Mahdiyeh
2 / 3 shared
Ghatkesar, Murali Krishna
2 / 3 shared
Angeloni, Livia
2 / 4 shared
Ganjian, Mahya
1 / 2 shared
Gunashekar, D.
1 / 3 shared
Veeger, R. P. E.
1 / 3 shared
Grossman, Q.
1 / 3 shared
Doubrovski, Eugeni
1 / 7 shared
Ruffoni, D.
1 / 12 shared
Nava, A. Herranz De La
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020

Co-Authors (by relevance)

  • Zadpoor, Amir, A.
  • Apachitei, Iulian
  • Šalandová, Monika
  • Klimopoulou, Maria
  • Leeflang, Marius Alexander
  • Kalogeropoulou, Maria
  • Zadpoor, Amir Abbas
  • Mirzaali, Mohammad J.
  • Díaz-Payno, Pedro J.
  • Osch, Gerjo J. V. M. Van
  • Yarali, Ebrahim
  • Boukany, Pouyan
  • David, Kristen
  • Staufer, Urs
  • Mirzaali, Mohammad, J.
  • Accardo, Angelo
  • Mol, Arjan
  • Dong, J.
  • Putra, Niko Eka
  • Leeflang, M. A.
  • Chang, J.
  • Zhou, Jie
  • Taheri, Peyman
  • Huan, Z.
  • Tumer, Nazli
  • Borg, K. G. N.
  • Tigrine, A.
  • Aksakal, S.
  • Rosa, V. R. De La
  • Minneboo, M.
  • Hagen, Cornelis Wouter
  • Nouri-Goushki, Mahdiyeh
  • Ghatkesar, Murali Krishna
  • Angeloni, Livia
  • Ganjian, Mahya
  • Gunashekar, D.
  • Veeger, R. P. E.
  • Grossman, Q.
  • Doubrovski, Eugeni
  • Ruffoni, D.
  • Nava, A. Herranz De La
OrganizationsLocationPeople

article

Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds

  • Zadpoor, Amir, A.
  • Mol, Arjan
  • Putra, Niko Eka
  • Leeflang, M. A.
  • Fratila-Apachitei, Lidy
  • Zhou, Jie
  • Taheri, Peyman
Abstract

<p>Additively manufactured biodegradable porous iron has been only very recently demonstrated. Two major limitations of such a biomaterial are very low biodegradability and incompatibility with magnetic resonance imaging (MRI). Here, we present a novel biomaterial that resolves both of those limitations. We used extrusion-based 3D printing to fabricate ex situ-alloyed biodegradable iron-manganese scaffolds that are non-ferromagnetic and exhibit enhanced rates of biodegradation. We developed ink formulations containing iron and 25, 30, or 35 wt% manganese powders, and debinding and sintering process to achieve Fe-Mn scaffolds with 69% porosity. The Fe25Mn scaffolds had the ε-martensite and γ-austenite phases, while the Fe30Mn and Fe35Mn scaffolds had only the γ-austenite phase. All iron-manganese alloys exhibited weakly paramagnetic behavior, confirming their potential to be used as MRI-friendly bone substitutes. The in vitro biodegradation rates of the scaffolds were very much enhanced (i.e., 4.0 to 4.6 times higher than that of porous iron), with the Fe35Mn alloy exhibiting the highest rate of biodegradation (i.e., 0.23 mm/y). While the elastic moduli and yield strengths of the scaffolds decreased over 28 days of in vitro biodegradation, those values remained in the range of cancellous bone. The culture of preosteoblasts on the porous iron-manganese scaffolds revealed that cells could develop filopodia on the scaffolds, but their viability was reduced by the effect of biodegradation. Altogether, this research marks a major breakthrough and demonstrates the great prospects of multi-material extrusion-based 3D printing to further address the remaining issues of porous iron-based materials and, eventually, develop ideal bone substitutes. Statement of significance: 3D printed porous iron biomaterials for bone substitution still encounter limitations, such as the slow biodegradation and magnetic resonance imaging incompatibility. Aiming to solve the two fundamental issues of iron, we present ex-situ alloyed porous iron-manganese scaffolds fabricated by means of multi-material extrusion-based 3D printing. Our porous iron-manganese possessed enhanced biodegradability, non-ferromagnetic property, and bone-mimicking mechanical property throughout the in vitro biodegradation period. The results demonstrated a great prospect of multi-material extrusion-based 3D printing to further address the remaining challenges of porous iron-based biomaterials to be an ideal biodegradable bone substitutes.</p>

Topics
  • porous
  • phase
  • extrusion
  • strength
  • iron
  • yield strength
  • porosity
  • biomaterials
  • Manganese
  • sintering
  • material extrusion