People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Tozzi, Gianluca
University of Greenwich
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2024Biofabrication of nanocomposite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cellscitations
- 2023Biofabrication of nanocomposite-based scaffolds containing human bone extracellular matrix for the differentiation of skeletal stem and progenitor cellscitations
- 2022Nonlinear micro finite element models based on digital volume correlation measurements predict early microdamage in newly formed bonecitations
- 2021Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defectscitations
- 2021Time-resolved in situ synchrotron-microCTcitations
- 2020Flexural resistance of CAD/CAM blocks. Part 3: polymer-based restorative materials for permanent restorations
- 2020Low-cycle full-field residual strains in cortical bone and their influence on tissue fracture evaluated via in situ stepwise and continuous X-ray computed tomographycitations
- 2019Anisotropic crack propagation and deformation in dentin observed by four-dimensional X-ray nano-computed tomographycitations
- 2019Sustained release from injectable composite gels loaded with silver nanowires designed to combat bacterial resistance in bone regeneration applicationscitations
- 2017Precision of digital volume correlation approaches for strain analysis in bone imaged with micro-computed tomography at different dimensional levelscitations
- 20174D printing biomimetic tissue structures using correlative approaches
- 2016Morphological and mechanical biomimetic bone structurescitations
- 2012Compressive fatigue behaviour of bovine cancellous bone and bone analogous materials under multi-step loading conditionscitations
Places of action
Organizations | Location | People |
---|
article
Multi-scale mechanical and morphological characterisation of sintered porous magnesium-based scaffolds for bone regeneration in critical-sized defects
Abstract
<p>Magnesium (Mg) and its alloys are very promising degradable, osteoconductive and osteopromotive materials to be used as regenerative treatment for critical-sized bone defects. Under load-bearing conditions, Mg alloys must display sufficient morphological and mechanical resemblance to the native bone they are meant to replace to provide adequate support and enable initial bone bridging. In this study, unique highly open-porous Mg-based scaffolds were mechanically and morphologically characterised at different scales. In situ X-ray computed tomography (XCT) mechanics, digital volume correlation (DVC), electron microscopy and nanoindentation were combined to assess the influence of material properties on the apparent (macro) mechanics of the scaffold. The results showed that Mg exhibited a higher connected structure (38.4mm<sup>−3</sup> and 6.2mm<sup>−3</sup> for Mg and trabecular bone (Tb), respectively) and smaller spacing (245µm and 629µm for Mg and Tb, respectively) while keeping an overall appropriate porosity of 55% in the range of trabecular bone (30-80%). This fully connected and highly porous structure promoted lower local strain compared to the trabecular bone structure at material level (i.e. -22067 ± 8409µε and -40120 ± 18364µε at 6% compression for Mg and trabecular bone, respectively) and highly ductile mechanical behaviour at apparent level preventing premature scaffold failure. Furthermore, the Mg scaffolds exceeded the physiological strain of bone tissue generated in daily activities such as walking or running (500-2000µε) by one order of magnitude. The yield stress was also found to be close to trabecular bone (2.06MPa and 6.67MPa for Mg and Tb, respectively). Based on this evidence, the study highlights the overall biomechanical suitability of an innovative Mg-based scaffold design to be used as a treatment for bone critical-sized defects. Statement of significance: Bone regeneration remains a challenging field of research where different materials and solutions are investigated. Among the variety of treatments, biodegradable magnesium-based implants represent a very promising possibility. The novelty of this study is based on the characterisation of innovative magnesium-based implants whose structure and manufacturing have been optimised to enable the preservation of mechanical integrity and resemble bone microarchitecture. It is also based on a multi-scale approach by coupling high-resolution X-ray computed tomography (XCT), with in situ mechanics, digital volume correlation (DVC) as well as nano-indentation and electron-based microscopy imaging to define how degradable porous Mg-based implants fulfil morphological and mechanical requirements to be used as critical bone defects regeneration treatment.</p>