People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Mirzaali, Mohammad, J.
Delft University of Technology
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Curvature tuning through defect-based 4D printingcitations
- 2024Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratiocitations
- 20244D Printing for Biomedical Applicationscitations
- 2023Biomechanical evaluation of additively manufactured patient-specific mandibular cage implants designed with a semi-automated workflowcitations
- 2023Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterialscitations
- 2023Quality of AM implants in biomedical applicationcitations
- 2022Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterialscitations
- 2022Merging strut-based and minimal surface meta-biomaterialscitations
- 2022Nonlinear coarse-graining models for 3D printed multi-material biomimetic compositescitations
- 2022Magneto‐/ electro‐responsive polymers toward manufacturing, characterization, and biomedical/ soft robotic applicationscitations
- 2022Additive Manufacturing of Biomaterialscitations
- 2021Fatigue performance of auxetic meta-biomaterialscitations
- 2021Dynamic characterization of 3D printed mechanical metamaterials with tunable elastic propertiescitations
- 2021Mechanical characterization of nanopillars by atomic force microscopycitations
- 2021Lattice structures made by laser powder bed fusioncitations
- 2020Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitutioncitations
- 2020Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printingcitations
- 2020Magnetorheological elastomer compositescitations
- 2019Auxeticity and stiffness of random networkscitations
- 2019Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD)citations
- 2019Additive manufacturing of metals using powder bed-based technologies
- 2019Fracture Behavior of Bio-Inspired Functionally Graded Soft–Hard Composites Made by Multi-Material 3D Printingcitations
- 2018Multi-material 3D printed mechanical metamaterialscitations
- 2017Rational design of soft mechanical metamaterialscitations
Places of action
Organizations | Location | People |
---|
article
Fatigue performance of auxetic meta-biomaterials
Abstract
<p>Meta-biomaterials offer a promising route towards the development of life-lasting implants. The concept aims to achieve solutions that are ordinarily impossible, by offering a unique combination of mechanical, mass transport, and biological properties through the optimization of their small-scale geometrical and topological designs. In this study, we primarily focus on auxetic meta-biomaterials that have the extraordinary ability to expand in response to axial tension. This could potentially improve the longstanding problem of implant loosening, if their performance can be guaranteed in cyclically loaded conditions. The high-cycle fatigue performance of additively manufactured (AM) auxetic meta-biomaterials made from commercially pure titanium (CP-Ti) was therefore studied. Small variations in the geometry of the re-entrant hexagonal honeycomb unit cell and its relative density resulted in twelve different designs (relative density: ~5–45%, re-entrant angle = 10–25°, Poisson's ratio = -0.076 to -0.504). Micro-computed tomography, scanning electron microscopy and mechanical testing were used to respectively measure the morphological and quasi-static properties of the specimens before proceeding with compression-compression fatigue testing. These auxetic meta-biomaterials exhibited morphological and mechanical properties that are deemed appropriate for bone implant applications (elastic modulus = 66.3–5648 MPa, yield strength = 1.4–46.7 MPa, pore size = 1.3–2.7 mm). With an average maximum stress level of 0.47 σ<sub>y</sub> at 10<sup>6</sup> cycles (range: 0.35 σ<sub>y</sub>σ<sub>y</sub>- 0.82 σ<sub>y</sub>σ<sub>y</sub>), the auxetic structures characterized here are superior to many other non-auxetic meta-biomaterials made from the same material. The optimization of the printing process and the potential application of post-processing treatments could improve their performance in cyclically loaded settings even further. Statement of Significance: Auxetic meta-biomaterials have a negative Poisson's ratio and, therefore, expand laterally in response to axial tension. Recently, they have been found to restore bone-implant contact along the lateral side of a hip stem. As a result, the bone will be compressed along both of the implant's contact lines, thereby actively reducing the risk of implant failure. In this case the material will be subjected to cyclic loading, for which no experimental data has been reported yet. Here, we present the first ever study of the fatigue performance of additively manufactured auxetic meta-biomaterials based on the re-entrant hexagonal honeycomb. These results will advance the adoption of auxetic meta-biomaterials in load-bearing applications, such as the hip stem, to potentially improve implant longevity.</p>