People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Marchat, David
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (9/9 displayed)
- 2020Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sitescitations
- 2016Porous hydroxyapatite bioceramics produced by impregnation of 3D-printed wax mold: Slurry feature optimizationcitations
- 2016Porous Bioceramics Produced by Impregnation of 3D-Printed Wax Mold: Ceramic Architectural Control and Process Limitationscitations
- 2015Elaboration of osteoinductive phosphocalcic bioceramics for bone tissue engineering
- 2015Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold
- 2013Synthesis and characterization of Cx-Siy-HA for bone tissue engineering applicationcitations
- 2013Elaboration and characterization of macroporous carbonated hydroxyapatite for bone tissue engineering
- 2013Thermal stability and sintering of C x Si y HA ceramics for bone tissue engineering application
- 2012Synthesis and Characterization of C<sub>x</sub>-Si<sub>y</sub>-HA for Bone Tissue Engineering Applicationcitations
Places of action
Organizations | Location | People |
---|
article
Custom-made macroporous bioceramic implants based on triply-periodic minimal surfaces for bone defects in load-bearing sites
Abstract
The architectural features of synthetic bone grafts are key parameters for regulating cell functions and tissue formation for the successful repair of bone defects. In this regard, macroporous structures based on triplyperiodic minimal surfaces (TPMS) are considered to have untapped potential. In the present study, custom-made implants based on a gyroid structure, with (GPRC) and without (GP) a cortical-like reinforcement, were specifically designed to fit an intended bone defect in rat femurs. Sintered hydroxyapatite implants were produced using a dedicated additive manufacturing technology and their morphological, physico-chemical and mechanical features were characterized. The implants' integrity and ability to support bone ingrowth were assessed after 4, 6 and 8 weeks of implantation in a 3-mm-long, femoral defect in Lewis rats. GP and GPRC implants were manufactured with comparable macro-to nano-architectures. Cortical-like reinforcement significantly improved implant effective stiffness and resistance to fracture after implantation. This cortical-like reinforcement also concentrated new bone formation in the core of the GPRC implants, without affecting newly formed bone quantity or maturity. This study showed, for the first time, that custom-made TPMS-based bioceramic implants could be produced and successfully implanted in load-bearing sites. Adding a cortical-like reinforcement (GPRC implants) was a relevant solution to improve implant mechanical resistance, and changed osteogenic mechanism compared to the GP implants.