Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Zadpoor, Amir, A.

  • Google
  • 38
  • 104
  • 2548

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (38/38 displayed)

  • 2024Curvature tuning through defect-based 4D printing4citations
  • 2024On-Demand Magnetically-Activated Drug Delivery from Additively Manufactured Porous Bone Implants to Tackle Antibiotic-Resistant Infections2citations
  • 2024Biodegradation-affected fatigue behavior of extrusion-based additively manufactured porous iron–manganese scaffolds5citations
  • 2024Bone cell response to additively manufactured 3D micro-architectures with controlled Poisson's ratio13citations
  • 20244D Printing for Biomedical Applications65citations
  • 2023Biomechanical evaluation of additively manufactured patient-specific mandibular cage implants designed with a semi-automated workflow4citations
  • 2023Auxeticity as a Mechanobiological Tool to Create Meta-Biomaterials20citations
  • 2023Extrusion-based 3D printing of biodegradable, osteogenic, paramagnetic, and porous FeMn-akermanite bone substitutes25citations
  • 2023Quality of AM implants in biomedical application6citations
  • 2022Mechanisms of fatigue crack initiation and propagation in auxetic meta-biomaterials39citations
  • 2022Extrusion-based additive manufacturing of Mg-Zn alloy scaffolds29citations
  • 2022Merging strut-based and minimal surface meta-biomaterials34citations
  • 2022Nonlinear coarse-graining models for 3D printed multi-material biomimetic composites11citations
  • 2022Additive manufacturing of bioactive and biodegradable porous iron-akermanite composites for bone regeneration39citations
  • 2022Poly(2-ethyl-2-oxazoline) coating of additively manufactured biodegradable porous iron14citations
  • 2022Additive Manufacturing of Biomaterials72citations
  • 2021Fatigue performance of auxetic meta-biomaterials74citations
  • 2021Extrusion-based 3D printing of ex situ-alloyed highly biodegradable MRI-friendly porous iron-manganese scaffolds35citations
  • 20214D printing of reconfigurable metamaterials and devicescitations
  • 2021Dynamic characterization of 3D printed mechanical metamaterials with tunable elastic properties13citations
  • 2021Extrusion-based 3D printed biodegradable porous iron79citations
  • 2021Biocompatibility and Absorption Behavior in Vitro of Direct Printed Porous Iron Porous Implantscitations
  • 2021Mechanical characterization of nanopillars by atomic force microscopy10citations
  • 2021Lattice structures made by laser powder bed fusion18citations
  • 2020Additively manufactured biodegradable porous zinc135citations
  • 2020Multi-material additive manufacturing technologies for Ti-, Mg-, and Fe-based biomaterials for bone substitution188citations
  • 2020Mechanics of bioinspired functionally graded soft-hard composites made by multi-material 3D printing110citations
  • 2019Auxeticity and stiffness of random networks37citations
  • 2019Additive manufacturing of Ti–6Al–4V parts through laser metal deposition (LMD)285citations
  • 2019Additively manufactured functionally graded biodegradable porous iron158citations
  • 2019Additive manufacturing of metals using powder bed-based technologiescitations
  • 2019Fracture Behavior of Bio-Inspired Functionally Graded Soft–Hard Composites Made by Multi-Material 3D Printing37citations
  • 2019A review of the fatigue behavior of 3D printed polymers137citations
  • 2019Biodegradation-affected fatigue behavior of additively manufactured porous magnesium109citations
  • 2018Multi-material 3D printed mechanical metamaterials104citations
  • 2018Additively manufactured biodegradable porous iron219citations
  • 2017Rational design of soft mechanical metamaterials83citations
  • 2017Additively manufactured biodegradable porous magnesium335citations

Places of action

Chart of shared publication
Moosabeiki, Vahid
3 / 3 shared
Ghodrat, Sepideh
1 / 7 shared
Van Manen, Teunis
2 / 2 shared
Bico, José
1 / 2 shared
Yarali, Ebrahim
4 / 7 shared
Callens, Sebastien, J. P.
2 / 2 shared
Habibi, Mehdi
1 / 9 shared
Mirzaali, Mohammad, J.
22 / 24 shared
Ghalayaniesfahani, Ava
2 / 2 shared
Accardo, Angelo
4 / 9 shared
Apachitei, Iulian
2 / 2 shared
Šalandová, Monika
1 / 1 shared
Klimopoulou, Maria
4 / 4 shared
Fratila-Apachitei, Lidy
10 / 11 shared
Leeflang, Marius Alexander
1 / 1 shared
Putra, Niko Eka
7 / 8 shared
Zhou, Jie
18 / 31 shared
Leeflang, Marius A.
1 / 1 shared
Boukany, Pouyan
1 / 1 shared
David, Kristen
1 / 1 shared
Staufer, Urs
2 / 5 shared
Díaz-Payno, Pedro J.
2 / 4 shared
Wolvius, E. B.
1 / 3 shared
Jonker, B. P.
1 / 3 shared
Leeflang, M. A.
12 / 25 shared
Saldivar, M. Cruz
1 / 2 shared
Kootwijk, A. Van
1 / 1 shared
Tumer, Nazli
3 / 3 shared
Mol, Arjan
10 / 64 shared
Dong, J.
2 / 12 shared
Chang, J.
1 / 15 shared
Taheri, Peyman
7 / 16 shared
Huan, Z.
1 / 6 shared
Shahriari, Nasim
1 / 1 shared
Plessis, A. Du
2 / 4 shared
Kolken, Eline
3 / 3 shared
Garcia, A. Fontecha
2 / 4 shared
Rans, Calvin
2 / 4 shared
Scheys, L.
1 / 2 shared
Meynen, A.
1 / 2 shared
Saldívar, Mauricio Cruz
1 / 1 shared
Doubrovski, Eugeni
3 / 7 shared
Borg, K. G. N.
1 / 2 shared
Tigrine, A.
1 / 1 shared
Aksakal, S.
1 / 1 shared
Rosa, V. R. De La
1 / 1 shared
Rajaai, S. M.
1 / 1 shared
Jansen, Kaspar
1 / 48 shared
Janbaz, Shahram
2 / 2 shared
Chen, Xianfeng
1 / 3 shared
Dayyani, Iman
1 / 6 shared
Zadeh, Mohammad Naghavi
1 / 1 shared
Yasaee, Mehdi
1 / 28 shared
Alijani, Farbod
1 / 5 shared
Minneboo, M.
1 / 3 shared
Yilmaz, A.
2 / 8 shared
Jahr, Holger
4 / 6 shared
Lietaert, K.
3 / 9 shared
Pouran, B.
5 / 11 shared
Pavanram, P.
5 / 6 shared
Weinans, Harrie
5 / 12 shared
Hagen, Cornelis Wouter
1 / 7 shared
Nouri-Goushki, Mahdiyeh
3 / 3 shared
Ghatkesar, Murali Krishna
2 / 3 shared
Angeloni, Livia
2 / 4 shared
Ganjian, Mahya
1 / 2 shared
Azarniya, Abolfazl
2 / 2 shared
Sovizi, Saeed
2 / 3 shared
Li, Wei
2 / 6 shared
San, H.
1 / 1 shared
Gunashekar, D.
1 / 3 shared
Veeger, R. P. E.
1 / 3 shared
Grossman, Q.
1 / 3 shared
Ruffoni, D.
1 / 12 shared
Nava, A. Herranz De La
1 / 1 shared
Pahlavani, H.
2 / 4 shared
Weglowski, Mare K. St
1 / 1 shared
Miranda, Georgina
1 / 9 shared
Colera, Xabier Garmendia
1 / 1 shared
Silva, Filipe Samuel
1 / 70 shared
Hosseini, Hamid Reza Madaah
1 / 1 shared
Wits, Wessel W.
1 / 2 shared
Ramakrishna, Seeram
1 / 19 shared
Bartolomeu, Flavio
1 / 3 shared
Yap, Chor Yen
1 / 1 shared
Ahn, Joseph
1 / 1 shared
Paggi, U.
1 / 1 shared
Zhang, X. Y.
2 / 3 shared
Bobbert, Françoise Siu Lin
2 / 2 shared
Gunashekar, Deepthishre
1 / 2 shared
Nava, Alba Herranz De La
1 / 1 shared
Safai, Lauren
1 / 1 shared
Lopez, Juan Cuellar
1 / 1 shared
Smit, Gerwin
1 / 3 shared
Tichelaar, F. D.
1 / 43 shared
Jahr, H.
2 / 2 shared
Caracciolo, A.
1 / 2 shared
Vergani, L.
2 / 11 shared
Gonzalez-Garcia, Yaiza
1 / 27 shared
Fockaert, L. I.
2 / 5 shared
Hedayati, Reza
1 / 5 shared
Vena, P.
1 / 8 shared
Strano, M.
1 / 4 shared
Schröder, K. U.
1 / 1 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Moosabeiki, Vahid
  • Ghodrat, Sepideh
  • Van Manen, Teunis
  • Bico, José
  • Yarali, Ebrahim
  • Callens, Sebastien, J. P.
  • Habibi, Mehdi
  • Mirzaali, Mohammad, J.
  • Ghalayaniesfahani, Ava
  • Accardo, Angelo
  • Apachitei, Iulian
  • Šalandová, Monika
  • Klimopoulou, Maria
  • Fratila-Apachitei, Lidy
  • Leeflang, Marius Alexander
  • Putra, Niko Eka
  • Zhou, Jie
  • Leeflang, Marius A.
  • Boukany, Pouyan
  • David, Kristen
  • Staufer, Urs
  • Díaz-Payno, Pedro J.
  • Wolvius, E. B.
  • Jonker, B. P.
  • Leeflang, M. A.
  • Saldivar, M. Cruz
  • Kootwijk, A. Van
  • Tumer, Nazli
  • Mol, Arjan
  • Dong, J.
  • Chang, J.
  • Taheri, Peyman
  • Huan, Z.
  • Shahriari, Nasim
  • Plessis, A. Du
  • Kolken, Eline
  • Garcia, A. Fontecha
  • Rans, Calvin
  • Scheys, L.
  • Meynen, A.
  • Saldívar, Mauricio Cruz
  • Doubrovski, Eugeni
  • Borg, K. G. N.
  • Tigrine, A.
  • Aksakal, S.
  • Rosa, V. R. De La
  • Rajaai, S. M.
  • Jansen, Kaspar
  • Janbaz, Shahram
  • Chen, Xianfeng
  • Dayyani, Iman
  • Zadeh, Mohammad Naghavi
  • Yasaee, Mehdi
  • Alijani, Farbod
  • Minneboo, M.
  • Yilmaz, A.
  • Jahr, Holger
  • Lietaert, K.
  • Pouran, B.
  • Pavanram, P.
  • Weinans, Harrie
  • Hagen, Cornelis Wouter
  • Nouri-Goushki, Mahdiyeh
  • Ghatkesar, Murali Krishna
  • Angeloni, Livia
  • Ganjian, Mahya
  • Azarniya, Abolfazl
  • Sovizi, Saeed
  • Li, Wei
  • San, H.
  • Gunashekar, D.
  • Veeger, R. P. E.
  • Grossman, Q.
  • Ruffoni, D.
  • Nava, A. Herranz De La
  • Pahlavani, H.
  • Weglowski, Mare K. St
  • Miranda, Georgina
  • Colera, Xabier Garmendia
  • Silva, Filipe Samuel
  • Hosseini, Hamid Reza Madaah
  • Wits, Wessel W.
  • Ramakrishna, Seeram
  • Bartolomeu, Flavio
  • Yap, Chor Yen
  • Ahn, Joseph
  • Paggi, U.
  • Zhang, X. Y.
  • Bobbert, Françoise Siu Lin
  • Gunashekar, Deepthishre
  • Nava, Alba Herranz De La
  • Safai, Lauren
  • Lopez, Juan Cuellar
  • Smit, Gerwin
  • Tichelaar, F. D.
  • Jahr, H.
  • Caracciolo, A.
  • Vergani, L.
  • Gonzalez-Garcia, Yaiza
  • Fockaert, L. I.
  • Hedayati, Reza
  • Vena, P.
  • Strano, M.
  • Schröder, K. U.
OrganizationsLocationPeople

article

Additively manufactured functionally graded biodegradable porous iron

  • Zadpoor, Amir, A.
  • Jahr, Holger
  • Leeflang, M. A.
  • Paggi, U.
  • Zhou, Jie
  • Zhang, X. Y.
  • Pouran, B.
  • Pavanram, P.
  • Bobbert, Françoise Siu Lin
  • Weinans, Harrie
Abstract

<p>Additively manufactured (AM) functionally graded porous metallic biomaterials offer unique opportunities to satisfy the contradictory design requirements of an ideal bone substitute. However, no functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first ever report on AM functionally graded biodegradable porous metallic biomaterials. We made use of a diamond unit cell for the topological design of four different types of porous structures including two functionally graded structures and two reference uniform structures. Specimens were then fabricated from pure iron powder using selective laser melting (SLM), followed by experimental and computational analyses of their permeability, dynamic biodegradation behavior, mechanical properties, and cytocompatibility. It was found that the topological design with functional gradients controlled the fluid flow, mass transport properties and biodegradation behavior of the AM porous iron specimens, as up to 4-fold variations in permeability and up to 3-fold variations in biodegradation rate were observed for the different experimental groups. After 4 weeks of in vitro biodegradation, the AM porous scaffolds lost 5–16% of their weight. This falls into the desired range of biodegradation rates for bone substitution and confirms our hypothesis that topological design could indeed accelerate the biodegradation of otherwise slowly degrading metals, like iron. Even after 4 weeks of biodegradation, the mechanical properties of the specimens (i.e., E = 0.5–2.1 GPa, σ<sub>y</sub> = 8–48 MPa) remained within the range of the values reported for trabecular bone. Design-dependent cell viability did not differ from gold standard controls for up to 48 h. This study clearly shows the great potential of AM functionally graded porous iron as a bone substituting material. Moreover, we demonstrate that complex topological design permits the control of mechanical properties, degradation behavior of AM porous metallic biomaterials. Statement of Significance: No functionally graded porous structures have ever been 3D-printed from biodegradable metals, even though biodegradability is crucial both for full tissue regeneration and for the prevention of implant-associated infections in the long term. Here, we present the first report on 3D-printed functionally graded biodegradable porous metallic biomaterials. Our results suggest that topological design in general, and functional gradients in particular can be used as an important tool for adjusting the biodegradation behavior of AM porous metallic biomaterials. The biodegradation rate and mass transport properties of AM porous iron can be increased while maintaining the bone-mimicking mechanical properties of these biomaterials. The observations reported here underline the importance of proper topological design in the development of AM porous biodegradable metals.</p>

Topics
  • porous
  • impedance spectroscopy
  • gold
  • selective laser melting
  • permeability
  • iron
  • biomaterials
  • iron powder