Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Castilho, Miguel

  • Google
  • 19
  • 79
  • 1076

Eindhoven University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (19/19 displayed)

  • 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs8citations
  • 2024Covalent Grafting of Functionalized MEW Fibers to Silk Fibroin Hydrogels to Obtain Reinforced Tissue Engineered Constructs8citations
  • 20243D Printed Magneto-Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models17citations
  • 20233D printed magneto-active microfiber scaffolds for remote stimulation of 3D in vitro skeletal muscle models2citations
  • 20233D Printed Magneto‐Active Microfiber Scaffolds for Remote Stimulation and Guided Organization of 3D In Vitro Skeletal Muscle Models17citations
  • 20233D printed and punched porous surfaces of a non-resorbable, biphasic implant for the repair of osteochondral lesions improves repair tissue adherence and ingrowthcitations
  • 2023Multi-leveled Nanosilicate Implants Can Facilitate Near-Perfect Bone Healing14citations
  • 2023Composite Graded Melt Electrowritten Scaffolds for Regeneration of the Periodontal Ligament-to-Bone Interface17citations
  • 2021Combinatorial fluorapatite-based scaffolds substituted with strontium, magnesium and silicon ions for mending bone defects33citations
  • 2020Anisotropic hygro-expansion in hydrogel fibers owing to uniting 3D electrowriting and supramolecular polymer assembly16citations
  • 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces119citations
  • 2020Combining multi-scale 3D printing technologies to engineer reinforced hydrogel-ceramic interfaces119citations
  • 2020Long-Term in Vivo Performance of Low-Temperature 3D-Printed Bioceramics in an Equine Model13citations
  • 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair47citations
  • 2020Stable and Antibacterial Magnesium-Graphene Nanocomposite-Based Implants for Bone Repair47citations
  • 2019Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration104citations
  • 2018Out-of-plane 3D-printed microfibers improve the shear properties of hydrogel composites60citations
  • 2018Out-of-Plane 3D-Printed Microfibers Improve the Shear Properties of Hydrogel Composites60citations
  • 2017Assessing bioink shape fidelity to aid material development in 3D bioprinting375citations

Places of action

Chart of shared publication
Ainsworth, Madison J.
2 / 2 shared
Steenbergen, Mies J. Van
1 / 4 shared
Rijen, Mattie Van
1 / 2 shared
Mihajlovic, Marko
2 / 2 shared
Ruijter, Mylène De
2 / 4 shared
Malda, Jos
17 / 39 shared
Viola, Martina
2 / 2 shared
Cedillo-Servin, Gerardo
5 / 5 shared
Vermonden, Tina
5 / 14 shared
Van Steenbergen, Mies J.
1 / 6 shared
De Ruijter, Mylène
3 / 3 shared
Van Rijen, Mattie
1 / 2 shared
Pinto, Artur M.
2 / 2 shared
Geijsen, Niels
3 / 3 shared
Pereira, André
3 / 7 shared
Sage, Fanny
3 / 3 shared
Silva, Joana
3 / 5 shared
Magalhães, Fernão D.
3 / 5 shared
Van Duijn, Joost
3 / 4 shared
Moon, Harrison
2 / 2 shared
Meneses, João
3 / 3 shared
Dahri, Ouafa
3 / 3 shared
Moreira Pinto, Artur
1 / 1 shared
Van Buul, Ward
1 / 1 shared
Plomp, Saskia
2 / 3 shared
Van Weeren, René
1 / 3 shared
Golafshan, Nasim
6 / 6 shared
Hermsen, Gied
1 / 1 shared
Fugazzola, Maria C.
1 / 1 shared
Van Aken, Joris A.
1 / 1 shared
Weinans, Harrie
1 / 12 shared
De Grauw, Janny
1 / 2 shared
Keshavarz, Mozhgan
1 / 1 shared
Orive, Gorka
2 / 5 shared
Alizadeh, Parvin
1 / 8 shared
Dolatshahi-Pirouz, Alireza
3 / 19 shared
Gaharwar, Akhilesh K.
1 / 5 shared
Kadumudi, Firoz Babu
1 / 3 shared
Bottino, Marco C.
1 / 7 shared
Dal-Fabbro, Renan
1 / 1 shared
Alehosseini, Morteza
2 / 2 shared
Ruijter, Mylene De
2 / 2 shared
Bhaduri, Sarit B.
1 / 1 shared
Daghrery, Arwa
1 / 1 shared
Krikonis, Konstantinos
1 / 1 shared
Kemp, Tom Van De
1 / 1 shared
Kharaziha, Mahshid
3 / 9 shared
Talebi, Ardeshir
1 / 1 shared
Ahmadi, Tahmineh
1 / 3 shared
Fathi, Mohammadhossein
1 / 1 shared
Wu, Dan Jing
1 / 3 shared
Lamers, Brigitte A. G.
1 / 8 shared
Dankers, Patricia Y. W.
1 / 12 shared
Hoefnagels, Jpm Johan
1 / 71 shared
Vonk, Niels H.
1 / 4 shared
Gbureck, Uwe
3 / 16 shared
Levato, Riccardo
3 / 13 shared
Diloksumpan, Paweena
2 / 5 shared
Weeren, P. René Van
2 / 5 shared
Van Weeren, P. René
1 / 2 shared
Bolaños, Rafael Vindas
1 / 3 shared
Groll, Jürgen
3 / 9 shared
Cokelaere, Stefan
1 / 3 shared
Grauw, Janny De
1 / 2 shared
Safari, Narges
2 / 2 shared
Utomo, Lizette
2 / 2 shared
Reza Toroghinejad, Mohammad
1 / 1 shared
Toroghinejad, Mohammad Reza
1 / 4 shared
Chen, Mike
1 / 1 shared
Mouser, Vivian
1 / 2 shared
Ito, Keita
1 / 13 shared
Dalton, Paul D.
2 / 9 shared
Hochleitner, Gernot
2 / 4 shared
Hrynevich, Andrei
2 / 3 shared
Haigh, Jodie N.
2 / 3 shared
Hennink, Wim E.
1 / 18 shared
Visser, Claas Willem
1 / 2 shared
Blokzijl, Maarten Michiel
1 / 1 shared
Ribeiro, Alexandre
1 / 1 shared
Chart of publication period
2024
2023
2021
2020
2019
2018
2017

Co-Authors (by relevance)

  • Ainsworth, Madison J.
  • Steenbergen, Mies J. Van
  • Rijen, Mattie Van
  • Mihajlovic, Marko
  • Ruijter, Mylène De
  • Malda, Jos
  • Viola, Martina
  • Cedillo-Servin, Gerardo
  • Vermonden, Tina
  • Van Steenbergen, Mies J.
  • De Ruijter, Mylène
  • Van Rijen, Mattie
  • Pinto, Artur M.
  • Geijsen, Niels
  • Pereira, André
  • Sage, Fanny
  • Silva, Joana
  • Magalhães, Fernão D.
  • Van Duijn, Joost
  • Moon, Harrison
  • Meneses, João
  • Dahri, Ouafa
  • Moreira Pinto, Artur
  • Van Buul, Ward
  • Plomp, Saskia
  • Van Weeren, René
  • Golafshan, Nasim
  • Hermsen, Gied
  • Fugazzola, Maria C.
  • Van Aken, Joris A.
  • Weinans, Harrie
  • De Grauw, Janny
  • Keshavarz, Mozhgan
  • Orive, Gorka
  • Alizadeh, Parvin
  • Dolatshahi-Pirouz, Alireza
  • Gaharwar, Akhilesh K.
  • Kadumudi, Firoz Babu
  • Bottino, Marco C.
  • Dal-Fabbro, Renan
  • Alehosseini, Morteza
  • Ruijter, Mylene De
  • Bhaduri, Sarit B.
  • Daghrery, Arwa
  • Krikonis, Konstantinos
  • Kemp, Tom Van De
  • Kharaziha, Mahshid
  • Talebi, Ardeshir
  • Ahmadi, Tahmineh
  • Fathi, Mohammadhossein
  • Wu, Dan Jing
  • Lamers, Brigitte A. G.
  • Dankers, Patricia Y. W.
  • Hoefnagels, Jpm Johan
  • Vonk, Niels H.
  • Gbureck, Uwe
  • Levato, Riccardo
  • Diloksumpan, Paweena
  • Weeren, P. René Van
  • Van Weeren, P. René
  • Bolaños, Rafael Vindas
  • Groll, Jürgen
  • Cokelaere, Stefan
  • Grauw, Janny De
  • Safari, Narges
  • Utomo, Lizette
  • Reza Toroghinejad, Mohammad
  • Toroghinejad, Mohammad Reza
  • Chen, Mike
  • Mouser, Vivian
  • Ito, Keita
  • Dalton, Paul D.
  • Hochleitner, Gernot
  • Hrynevich, Andrei
  • Haigh, Jodie N.
  • Hennink, Wim E.
  • Visser, Claas Willem
  • Blokzijl, Maarten Michiel
  • Ribeiro, Alexandre
OrganizationsLocationPeople

article

Bi-layered micro-fibre reinforced hydrogels for articular cartilage regeneration

  • Chen, Mike
  • Mouser, Vivian
  • Ito, Keita
  • Malda, Jos
  • Castilho, Miguel
Abstract

Articular cartilage has limited capacity for regeneration and when damaged cannot be repaired with currently available metallic or synthetic implants. We aim to bioengineer a microfibre-reinforced hydrogel that can capture the zonal depth-dependent mechanical properties of native cartilage, and simultaneously support neo-cartilage formation. With this goal, a sophisticated bi-layered microfibre architecture, combining a densely distributed crossed fibre mat (superficial tangential zone, STZ) and a uniform box structure (middle and deep zone, MDZ), was successfully manufactured via melt electrospinning and combined with a gelatin–methacrylamide hydrogel. The inclusion of a thin STZ layer greatly increased the composite construct's peak modulus under both incongruent (3.2-fold) and congruent (2.1-fold) loading, as compared to hydrogels reinforced with only a uniform MDZ structure. Notably, the stress relaxation response of the bi-layered composite construct was comparable to the tested native cartilage tissue. Furthermore, similar production of sulphated glycosaminoglycans and collagen II was observed for the novel composite constructs cultured under mechanical conditioning w/o TGF-ß1 supplementation and in static conditions w/TGF-ß1 supplementation, which confirmed the capability of the novel composite construct to support neo-cartilage formation upon mechanical stimulation. To conclude, these results are an important step towards the design and manufacture of biomechanically competent implants for cartilage regeneration. Statement of Significance: Damage to articular cartilage results in severe pain and joint disfunction that cannot be treated with currently available implants. This study presents a sophisticated bioengineered bi-layered fibre reinforced cell-laden hydrogel that can approximate the functional mechanical properties of native cartilage. For the first time, the importance of incorporating a viable superficial tangential zone (STZ) – like structure to improve the load-bearing properties of ...

Topics
  • impedance spectroscopy
  • surface
  • inclusion
  • melt
  • layered
  • composite
  • biomaterials
  • electrospinning