People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Duval, Hervé
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (7/7 displayed)
- 2019Mechanisms of pore formation in hydrogel scaffolds textured by freeze-dryingcitations
- 2019Mechanisms of pore formation in hydrogel scaffolds textured by freeze-dryingcitations
- 2014Numerical simulation of liquid metal infiltration and solidification inside a capillary tube
- 2012Dewetting of Low-Viscosity Films at Solid/Liquid Interfacescitations
- 2003Mathematical modelling of the plasma arc behaviour in the vacuum arc remelting process
- 2002Modelling of plasma generation and expansion in a vacuum arc: application to the vacuum arc remelting processcitations
- 2001Evaporation of Fe and Cr from Induction-stirred Austenitic Stainless Steel. Influence of the Inert Gas Pressure.citations
Places of action
Organizations | Location | People |
---|
article
Mechanisms of pore formation in hydrogel scaffolds textured by freeze-drying
Abstract
Whereas freeze-drying is a widely used method to produce porous hydrogel scaffolds, the mechanisms of pore formation involved in this process remained poorly characterized. To explore this, we focused on a cross-linked polysaccharide-based hydrogel developed for bone tissue engineering. Scaffolds were first swollen in 0.025% NaCl then freeze-dried at low cooling rate, i.e. -0.1 degrees C min(-1), and finally swollen in aqueous solvents of increasing ionic strength. We found that scaffold's porous structure is strongly conditioned by the nucleation of ice. Electron cryo-microscopy of frozen scaffolds demonstrates that each pore results from the growth of one to a few ice grains. Most crystals were formed by secondary nucleation since very few nucleating sites were initially present in each scaffold (0.1 nuclei cm(-3) degrees C-1). The polymer chains are rejected in the intergranular space and form a macro-network. Its characteristic length scale coincides with the ice grain size (160 mu m) and is several orders of magnitude greater than the mesh size (90 nm) of the cross-linked network. After sublimation, the ice grains are replaced by macro-pores of 280 pm mean size and the resulting dry structure is highly porous, i.e. 93%, as measured by high-resolution X-ray tomography. In the swollen state, the scaffold mean pore size decreases in aqueous solvent of increasing ionic strength (120 pm in 0.025% NaCl and 54 pm in DBPS) but the porosity remains the same, i.e. 29% regardless of the solvent. Finally, cell seeding of dried scaffolds demonstrates that the pores are adequately interconnected to allow homogenous cell distribution.