Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Schmidt-Bleek, K.

  • Google
  • 6
  • 40
  • 213

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2024Titanium vs PEO Surface-Modified Magnesium Plate Fixation in a Mandible Bone Healing Model in Sheep.1citations
  • 2024Titanium versus plasma electrolytic oxidation surface-modified magnesium miniplates in a forehead secondary fracture healing model in sheep.2citations
  • 2022Long-term in vivo observations show biocompatibility and performance of ZX00 magnesium screws surface-modified by plasma-electrolytic oxidation in Göttingen miniature pigs.30citations
  • 2021Improved in vivo osseointegration and degradation behavior of PEO surface-modified WE43 magnesium plates and screws after 6 and 12 months.62citations
  • 2019Collagen I-based scaffolds negatively impact fracture healing in a mouse-osteotomy-model although used routinely in research and clinical application.26citations
  • 2010Designing biomimetic scaffolds for bone regeneration: Why aim for a copy of mature tissue properties if nature uses a different approach?92citations

Places of action

Chart of shared publication
Fischer, H.
4 / 27 shared
Gn, Duda
3 / 11 shared
Herzog, P.
2 / 3 shared
Turostowski, M.
2 / 2 shared
Rendenbach, C.
4 / 8 shared
Heiland, Max
4 / 10 shared
Prates Soares, A.
1 / 1 shared
Ellinghaus, A.
2 / 2 shared
Ap, Soares
2 / 2 shared
Leber, C.
1 / 1 shared
Duda, G.
3 / 9 shared
Kröger, N.
2 / 2 shared
Van Gaalen, K.
1 / 1 shared
Kreiker, H.
2 / 2 shared
Jung, O.
2 / 2 shared
Hanken, H.
2 / 2 shared
Kopp, A.
2 / 4 shared
Smeets, R.
2 / 3 shared
Beck-Broichsitter, B.
1 / 1 shared
Thiele, M.
1 / 9 shared
Stumpp, S.
1 / 3 shared
Ae, Hauser
1 / 1 shared
Hoff, P.
1 / 1 shared
Pfeiffenberger, M.
1 / 1 shared
Damerau, A.
1 / 1 shared
Durst, M.
1 / 1 shared
Mc, Weber
1 / 1 shared
Kirchner, M.
1 / 1 shared
Stefanowski, J.
1 / 1 shared
Buttgereit, F.
1 / 1 shared
Gaber, T.
1 / 2 shared
Lang, A.
1 / 4 shared
Strube, P.
1 / 3 shared
Mehta, M.
1 / 3 shared
Cipitria, A.
1 / 8 shared
Wildemann, B.
1 / 3 shared
Willie, B. M.
1 / 2 shared
Fratzl, Prof. Dr. Dr. H. C. Peter
1 / 569 shared
Petersen, A.
1 / 3 shared
Lienau, J.
1 / 3 shared
Chart of publication period
2024
2022
2021
2019
2010

Co-Authors (by relevance)

  • Fischer, H.
  • Gn, Duda
  • Herzog, P.
  • Turostowski, M.
  • Rendenbach, C.
  • Heiland, Max
  • Prates Soares, A.
  • Ellinghaus, A.
  • Ap, Soares
  • Leber, C.
  • Duda, G.
  • Kröger, N.
  • Van Gaalen, K.
  • Kreiker, H.
  • Jung, O.
  • Hanken, H.
  • Kopp, A.
  • Smeets, R.
  • Beck-Broichsitter, B.
  • Thiele, M.
  • Stumpp, S.
  • Ae, Hauser
  • Hoff, P.
  • Pfeiffenberger, M.
  • Damerau, A.
  • Durst, M.
  • Mc, Weber
  • Kirchner, M.
  • Stefanowski, J.
  • Buttgereit, F.
  • Gaber, T.
  • Lang, A.
  • Strube, P.
  • Mehta, M.
  • Cipitria, A.
  • Wildemann, B.
  • Willie, B. M.
  • Fratzl, Prof. Dr. Dr. H. C. Peter
  • Petersen, A.
  • Lienau, J.
OrganizationsLocationPeople

article

Collagen I-based scaffolds negatively impact fracture healing in a mouse-osteotomy-model although used routinely in research and clinical application.

  • Gn, Duda
  • Ae, Hauser
  • Hoff, P.
  • Pfeiffenberger, M.
  • Damerau, A.
  • Durst, M.
  • Mc, Weber
  • Kirchner, M.
  • Stefanowski, J.
  • Buttgereit, F.
  • Schmidt-Bleek, K.
  • Gaber, T.
  • Lang, A.
Abstract

Although several biomaterials for bone regeneration have been developed in the last decades, clinical application of bone morphogenetic protein 2 is clinically only approved when applied on an absorbable bovine collagen I scaffold (ACS) (Helistat; ACS-H). In research, another ACS, namely Lyostypt (ACS-L) is frequently used as a scaffold in bone-linked studies. Nevertheless, until today, the influence of ACS alone on bone healing remains unknown. Unexpectedly, in vitro studies using ASC-H revealed a suppression of osteogenic differentiation and a significant reduction of cell vitality when compared to ASC-L. In mice, we observed a significant delay in bone healing when applying ACS-L in the fracture gap during femoral osteotomy. The results of our study show for the first time a negative influence of both ACS-H and ACS-L on bone formation demonstrating a substantial need for more sophisticated delivery systems for local stimulation of bone healing in both clinical application and research. STATEMENT OF SIGNIFICANCE: Our study provides evidence-based justification to promote the development and approval of more suitable and sophisticated delivery systems in bone healing research. Additionally, we stimulate researchers of the field to consider that the application of those scaffolds as a delivery system for new substances represents a delayed healing approach rather than a normal bone healing which could greatly impact the outcome of those studies and play a pivotal role in the translation to the clinics. Moreover, we provide impulses on underlying mechanism involving the roles of small-leucine rich proteoglycans (SLRP) for further detailed investigations.

Topics
  • impedance spectroscopy
  • biomaterials