People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Magnaudeix, Amandine
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (11/11 displayed)
- 2024Ultra-High Frequency Dielectrophoresis to Characterize Mesenchymal Stem Cells Differentiation: Application to bioceramics synthesis
- 2022Processing by Laser Stereolithography and In Vitro Biological Evaluation of Hydroxyapatite Scaffolds Mimicking Human Trabecular Bone Architecture
- 2022Processing by Laser Stereolithography and <i>In Vitro</i> Biological Evaluation of Hydroxyapatite Scaffolds Mimicking Human Trabecular Bone Architecture
- 2022Laser powder bed fusion of ultra-high-molecular-weight polyethylene/hydroxyapatite composites for bone tissue engineeringcitations
- 2022Calcium phosphate bioceramics: From cell behavior to chemical-physical propertiescitations
- 2022New Approach to Identify the Physiological State of Bone Cells at the Surface of Hydroxyapatite Bioceramicscitations
- 2021Sintering and biocompatibility of copper-doped hydroxyapatite bioceramicscitations
- 2021Chemical Functionalization of Calcium Phosphate Bioceramic Surfacescitations
- 2019Pre-osteoblast cell colonization of porous silicon substituted hydroxyapatite bioceramics: Influence of microporosity and macropore designcitations
- 2016Hydroxyapatite microporous bioceramics as vancomycin reservoir: Antibacterial efficiency and biocompatibility investigationcitations
- 2016Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) modelcitations
Places of action
Organizations | Location | People |
---|
article
Quantitative analysis of vascular colonisation and angio-conduction in porous silicon-substituted hydroxyapatite with various pore shapes in a chick chorioallantoic membrane (CAM) model
Abstract
The development of scaffolds for bone filling of large defects requires an understanding of angiogenesis and vascular guidance, which are crucial processes for bone formation and healing. There are few investigations on the ability of a scaffold to support blood vessel guidance and it this is of great importance because it relates to the quality and dispersion of the blood vessel network. This work reports an analysis of vascularisation of porous silicon-substituted hydroxyapatite (SiHA) bioceramics and the effects of pore shape on vascular guidance using an expedient ex ovo model, the chick embryo chorioallantoic membrane (CAM) assay. Image analysis of vascularised implants assessed the vascular density, fractal dimension and diameter of blood vessels at two different scales (the whole ceramic and pores alone) and was performed on model SiHA ceramics harbouring pores of various cross-sectional geometries (circles, square, rhombus, triangles and stars). SiHA is a biocompatible material which allows the conduction of blood vessels on its surface. The presence of pores did not influence angiogenesis related-parameters (arborisation, fractal dimension) but pore geometry affected the blood vessel guidance and angio-conductive potential (diameter and number of the blood vessels converging toward the pores). The measured angles of pore cross-section modulated the number and diameter of blood vessels converging to pores, with triangular pores appearing of particular interest. This result will be used for shaping ceramic scaffolds with specific porous architecture to promote vascular colonisation and osteointegration.