People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sui, Tan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Bio-inspired nacre-like zirconia/PMMA composites for chairside CAD/CAM dental restorationscitations
- 2018Structure-function correlative microscopy of peritubular and intertubular dentinecitations
- 2018Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysiscitations
- 2016Understanding nature’s residual strain engineering at the human dentine-enamel junction interfacecitations
- 2016The effect of eigenstrain induced by ion beam damage on the apparent strain relief in FIB-DIC residual stress evaluationcitations
- 2016Multi-scale characterisation of the 3D microstructure of a thermally-shocked bulk metallic glass matrix compositecitations
- 2015A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniquescitations
- 2015A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesiscitations
- 2014Structure-mechanical function relations at nano-scale in heat-affected human dental tissuecitations
- 2014Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strainscitations
- 2014A study of phase transformation at the surface of a zirconia ceramic
- 2013Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisationcitations
- 2013Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentinecitations
Places of action
Organizations | Location | People |
---|
article
Understanding nature’s residual strain engineering at the human dentine-enamel junction interface
Abstract
Human dental tissue is a hydrated biological mineral composite. In terms of volume and mass, a human tooth mainly consists of dentine and enamel. Human dental tissues have a hierarchical structure and versatile mechanical properties. The dentine enamel junction (DEJ) is an important biological interface that provides a durable bond between enamel and dentine that is a life-long success story: while intact and free from disease, this interface does not fail despite the harsh thermo-mechanical loading in the oral cavity. The underlying reasons for such remarkable strength and durability are still not fully clear from the structural and mechanical perspectives. One possibility is that, in an example of residual stress engineering, evolution has led to the formation of a layer of inelastic strain adjacent to the DEJ during odontogenesis (tooth formation). However, due to significant experimental and interpretational challenges, no meaningful quantification of residual stress in the vicinity of the DEJ at the appropriate spatial resolution has been reported to date. In this study, we applied a recently developed flexible and versatile method for measuring the residual elastic strain at (sub)micron-scale utilising focused ion beam (FIB) milling with digital image correlation (DIC). We report the results that span the transition from human dentine to enamel, and incorporate the material lying at and in the vicinity of the DEJ. The capability of observing the association between internal architecture and the residual elastic strain state at the micrometre scale is useful for understanding the remarkable performance of the DEJ and may help the creation of improved biomimetic materials for clinical and engineering applications.