Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Söntjens, Shm Serge

  • Google
  • 6
  • 35
  • 213

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (6/6 displayed)

  • 2020Imaging the In Vivo Degradation of Tissue Engineering Implants by Use of Supramolecular Radiopaque Biomaterials13citations
  • 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials72citations
  • 2015Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials:In vitro degradation pathways72citations
  • 2012Time-dependent failure of amorphous poly-D,L-lactide : influence of molecular weight23citations
  • 2010Time-dependent failure in load-bearing polymers : a potential hazard in structural applications of polylactides33citations
  • 2000A scattering electro-optical switch based on dendrimers dispersed in liquid crystalscitations

Places of action

Chart of shared publication
Vink, Aryan
1 / 2 shared
Kluin, Jolanda
1 / 2 shared
Brizard, Aurelie M. A.
1 / 2 shared
Talacua, Hanna
1 / 2 shared
Budde, Ricardo P. J.
1 / 2 shared
Janssen, Henk M.
1 / 6 shared
Dankers, Patricia Y. W.
1 / 12 shared
Bouten, Cvc Carlijn
3 / 13 shared
Almen, Geert C. Van
1 / 1 shared
Herwerden, Lex A. Van
1 / 1 shared
Thakkar, Shraddha H.
1 / 2 shared
Janssen, H. M. H. A.
1 / 1 shared
Driessen-Mol, A.
1 / 2 shared
Cox, Martijn
1 / 1 shared
Mes, T.
1 / 1 shared
Bosman, Anton
1 / 1 shared
Nandakumar, A.
1 / 1 shared
Brugmans, M. C. P.
1 / 1 shared
Baaijens, F. P. T.
1 / 10 shared
Baaijens, Fpt Frank
1 / 12 shared
Bosman, Aw Tonny
1 / 4 shared
Driessen-Mol, A. Anita
1 / 2 shared
Janssen, Hmha
1 / 1 shared
Nandakumar, A. An Andkumar
1 / 1 shared
Brugmans, Mcp Marieke
1 / 1 shared
Mes, T. Tristan
1 / 1 shared
Cox, Maj Martijn
1 / 1 shared
Smit, Th
2 / 3 shared
Govaert, Leon E.
2 / 90 shared
Engels, Tom A. P.
2 / 33 shared
Broer, Dj Dirkdick
1 / 65 shared
Bastiaansen, Cwm Cees
1 / 32 shared
Van, M. C. W. Boxtel
1 / 3 shared
Baars, M. W. P. L.
1 / 4 shared
Meijer, Ew Bert
1 / 48 shared
Chart of publication period
2020
2015
2012
2010
2000

Co-Authors (by relevance)

  • Vink, Aryan
  • Kluin, Jolanda
  • Brizard, Aurelie M. A.
  • Talacua, Hanna
  • Budde, Ricardo P. J.
  • Janssen, Henk M.
  • Dankers, Patricia Y. W.
  • Bouten, Cvc Carlijn
  • Almen, Geert C. Van
  • Herwerden, Lex A. Van
  • Thakkar, Shraddha H.
  • Janssen, H. M. H. A.
  • Driessen-Mol, A.
  • Cox, Martijn
  • Mes, T.
  • Bosman, Anton
  • Nandakumar, A.
  • Brugmans, M. C. P.
  • Baaijens, F. P. T.
  • Baaijens, Fpt Frank
  • Bosman, Aw Tonny
  • Driessen-Mol, A. Anita
  • Janssen, Hmha
  • Nandakumar, A. An Andkumar
  • Brugmans, Mcp Marieke
  • Mes, T. Tristan
  • Cox, Maj Martijn
  • Smit, Th
  • Govaert, Leon E.
  • Engels, Tom A. P.
  • Broer, Dj Dirkdick
  • Bastiaansen, Cwm Cees
  • Van, M. C. W. Boxtel
  • Baars, M. W. P. L.
  • Meijer, Ew Bert
OrganizationsLocationPeople

article

Hydrolytic and oxidative degradation of electrospun supramolecular biomaterials

  • Janssen, H. M. H. A.
  • Driessen-Mol, A.
  • Cox, Martijn
  • Söntjens, Shm Serge
  • Bouten, Cvc Carlijn
  • Mes, T.
  • Bosman, Anton
  • Nandakumar, A.
  • Brugmans, M. C. P.
  • Baaijens, F. P. T.
Abstract

<p>The emerging field of in situ tissue engineering (TE) of load bearing tissues places high demands on the implanted scaffolds, as these scaffolds should provide mechanical stability immediately upon implantation. The new class of synthetic supramolecular biomaterial polymers, which contain non-covalent interactions between the polymer chains, thereby forming complex 3D structures by self assembly. Here, we have aimed to map the degradation characteristics of promising (supramolecular) materials, by using a combination of in vitro tests. The selected biomaterials were all polycaprolactones (PCLs), either conventional and unmodified PCL, or PCL with supramolecular hydrogen bonding moieties (either 2-ureido-[1H]-pyrimidin-4-one or bis-urea units) incorporated into the backbone. As these materials are elastomeric, they are suitable candidates for cardiovascular TE applications. Electrospun scaffold strips of these materials were incubated with solutions containing enzymes that catalyze hydrolysis, or solutions containing oxidative species. At several time points, chemical, morphological, and mechanical properties were investigated. It was demonstrated that conventional and supramolecular PCL-based polymers respond differently to enzyme-accelerated hydrolytic or oxidative degradation, depending on the morphological and chemical composition of the material. Conventional PCL is more prone to hydrolytic enzymatic degradation as compared to the investigated supramolecular materials, while, in contrast, the latter materials are more susceptible to oxidative degradation. Given the observed degradation pathways of the examined materials, we are able to tailor degradation characteristics by combining selected PCL backbones with additional supramolecular moieties. The presented combination of in vitro test methods can be employed to screen, limit, and select biomaterials for pre-clinical in vivo studies targeted to different clinical applications.</p>

Topics
  • impedance spectroscopy
  • polymer
  • Hydrogen
  • chemical composition
  • forming
  • biomaterials