People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Divito, Michael D.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
In vitro collagen fibril alignment via incorporation of nanocrystalline cellulose
Abstract
<p>This study demonstrates a method for producing ordered collagen fibrils on a similar length scale to those in the cornea, using a one-pot liquid-phase synthesis. The alignment persists throughout samples on the mm scale. The addition of nanocrystalline cellulose (NCC), a biocompatible and widely available material, to collagen prior to gelation causes the fibrils to align and achieve a narrow size distribution (36 ± 8 nm). The effects of NCC loading in the composites on microstructure, transparency and biocompatibility are studied by scanning electron microscopy, ultraviolet-visible spectroscopy and cell growth experiments. A 2% loading of NCC increases the transparency of collagen while producing an ordered microstructure. A mechanism is proposed for the ordering behavior on the basis of enhanced hydrogen bonding during collagen gel formation.</p>