People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Erko, Maxim
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (3/3 displayed)
Places of action
Organizations | Location | People |
---|
article
A spider's biological vibration filter
Abstract
<p>A strain-sensing lyriform organ (HS-10) found on all of the legs of a Central American wandering spider (Cupiennius salei) detects courtship, prey and predator vibrations transmitted by the plant on which it sits. It has been suggested that the viscoelastic properties of a cuticular pad directly adjacent to the sensory organ contribute to the organ's pronounced high-pass characteristics. Here, we investigate the micromechanical properties of the cuticular pad biomaterial in search of a deeper understanding of its impact on the function of the vibration sensor. These properties are considered to be an effective adaptation for the selective detection of signals for frequencies >40 Hz. Using surface force spectroscopy mapping we determine the elastic modulus of the pad surface over a temperature range of 15-40 °C at various loading frequencies. In the glassy state, the elastic modulus was ∼100 MPa, while in the rubbery state the elastic modulus decreased to 20 MPa. These data are analyzed according to the principle of time-temperature superposition to construct a master curve that relates mechanical properties, temperature and stimulus frequencies. By estimating the loss and storage moduli vs. temperature and frequency it was possible to make a direct comparison with electrophysiology experiments, and it was found that the dissipation of energy occurs within a frequency window whose position is controlled by environmental temperatures.</p>