People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Sui, Tan
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (13/13 displayed)
- 2023Bio-inspired nacre-like zirconia/PMMA composites for chairside CAD/CAM dental restorationscitations
- 2018Structure-function correlative microscopy of peritubular and intertubular dentinecitations
- 2018Nanoscale residual stress depth profiling by Focused Ion Beam milling and eigenstrain analysiscitations
- 2016Understanding nature’s residual strain engineering at the human dentine-enamel junction interfacecitations
- 2016The effect of eigenstrain induced by ion beam damage on the apparent strain relief in FIB-DIC residual stress evaluationcitations
- 2016Multi-scale characterisation of the 3D microstructure of a thermally-shocked bulk metallic glass matrix compositecitations
- 2015A state-of-the-art review of micron-scale spatially resolved residual stress analysis by FIB-DIC ring-core milling and other techniquescitations
- 2015A comparative transmission electron microscopy, energy dispersive x-ray spectroscopy and spatially resolved micropillar compression study of the yttria partially stabilised zirconia - porcelain interface in dental prosthesiscitations
- 2014Structure-mechanical function relations at nano-scale in heat-affected human dental tissuecitations
- 2014Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strainscitations
- 2014A study of phase transformation at the surface of a zirconia ceramic
- 2013Hierarchical modelling of elastic behaviour of human enamel based on synchrotron diffraction characterisationcitations
- 2013Multiscale modelling and diffraction-based characterization of elastic behaviour of human dentinecitations
Places of action
Organizations | Location | People |
---|
article
Hierarchical modelling of in situ elastic deformation of human enamel based on photoelastic and diffraction analysis of stresses and strains
Abstract
Human enamel is a typical hierarchical mineralized tissue with a two-level composite structure. To date, few studies have focused on how the mechanical behaviour of this tissue is affected by both the rod orientation at the microscale and the preferred orientation of mineral crystallites at the nanoscale. In this study, wide-angle X-ray scattering was used to determine the internal lattice strain response of human enamel samples (with differing rod directions) as a function of in situ uniaxial compressive loading. Quantitative stress distribution evaluation in the birefringent mounting epoxy was performed in parallel using photoelastic techniques. The resulting experimental data was analysed using an advanced multiscale Eshelby inclusion model that takes into account the two-level hierarchical structure of human enamel, and reflects the differing rod directions and orientation distributions of hydroxyapatite crystals. The achieved satisfactory agreement between the model and the experimental data, in terms of the values of multidirectional strain components under the action of differently orientated loads, suggests that the multiscale approach captures reasonably successfully the structure–property relationship between the hierarchical architecture of human enamel and its response to the applied forces. This novel and systematic approach can be used to improve the interpretation of the mechanical properties of enamel, as well as of the textured hierarchical biomaterials in general.