People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Antaris, Alexander L.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (2/2 displayed)
Places of action
Organizations | Location | People |
---|
article
Design of three-dimensional engineered protein hydrogels for tailored control of neurite growth
Abstract
The design of bioactive materials allows tailored studies probing cell-biomaterial interactions, however, relatively few studies have examined the effects of ligand density and material stiffness on neurite growth in three-dimensions. Elastin-like proteins (ELPs) have been designed with modular bioactive and structural regions to enable the systematic characterization of design parameters within three-dimensional (3-D) materials. To promote neurite out-growth and better understand the effects of common biomaterial design parameters on neuronal cultures we here focused on the cell-adhesive ligand density and hydrogel stiffness as design variables for ELP hydrogels. With the inherent design freedom of engineered proteins these 3-D ELP hydrogels enabled decoupled investigations into the effects of biomechanics and biochemistry on neurite out-growth from dorsal root ganglia. Increasing the cell-adhesive RGD ligand density from 0 to 1.9×10(7)ligands μm(-3) led to a significant increase in the rate, length, and density of neurite out-growth, as quantified by a high throughput algorithm developed for dense neurite analysis. An approximately two-fold improvement in total neurite out-growth was observed in materials with the higher ligand density at all time points up to 7 days. ELP hydrogels with initial elastic moduli of 0.5, 1.5, or 2.1kPa and identical RGD ligand densities revealed that the most compliant materials led to the greatest out-growth, with some neurites extending over 1800μm by day 7. Given the ability of ELP hydrogels to efficiently promote neurite out-growth within defined and tunable 3-D microenvironments these materials may be useful in developing therapeutic nerve guides and the further study of basic neuron-biomaterial interactions.