Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Edmonds, Neil

  • Google
  • 2
  • 4
  • 25

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (2/2 displayed)

  • 2014Rubber-like materials prepared from copolymerization of tannin fatty acid conjugates and vegetable oils6citations
  • 2012Vegetable oil thermosets reinforced by tannin-lipid formulations19citations

Places of action

Chart of shared publication
Al-Hakkak, Jafar
2 / 2 shared
Luo, Chunhua
2 / 2 shared
Grigsby, Warren
2 / 22 shared
Easteal, Allan
1 / 1 shared
Chart of publication period
2014
2012

Co-Authors (by relevance)

  • Al-Hakkak, Jafar
  • Luo, Chunhua
  • Grigsby, Warren
  • Easteal, Allan
OrganizationsLocationPeople

article

Vegetable oil thermosets reinforced by tannin-lipid formulations

  • Easteal, Allan
  • Al-Hakkak, Jafar
  • Edmonds, Neil
  • Luo, Chunhua
  • Grigsby, Warren
Abstract

Totally bio-based thermosetting polymers which are comparable to synthetic polyester thermosets have been prepared from copolymerization of condensed tannin-fatty acid esters with vegetable oils. Oxidative copolymerization of tannin linoleate/acetate mixed esters with linseed oil and tung oil produced polymer films ranging from soft rubbers to rigid thermosets. Tannin incorporation into the formulations was essential for the final product to achieve necessary mechanical strength. Films had ambient modulus values between 0.12 and 1.6 GPa with glass transition temperatures ranging from 32 to 72C and calculated crosslink densities of 450 to 43800 mol/m3. Film stiffness,Tg and crosslink density increase with greater tannin linoeate/acetate content due mainly to this tannin component providing rigidity through polyphenolic aromatic rings and unsaturated chains as crosslinking sites.

Topics
  • density
  • glass
  • glass
  • strength
  • thermogravimetry
  • glass transition temperature
  • thermoset
  • rubber
  • ester