People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salih, Vehid
University of Plymouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2016Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3‐hydroxybutyrate) and micro‐fibrillated bacterial cellulosecitations
- 2016P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineeringcitations
- 2015Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expressioncitations
- 2012Titanium-containing bioactive phosphate glasses.citations
- 2012Osteochondral tissue engineering: scaffolds, stem cells and applications.citations
- 2012Structural characterization and physical properties of P2O5-CaO-Na2O-TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies.citations
- 2012Titanium phosphate glass microspheres for bone tissue engineering.citations
- 2012The enhanced modulation of key bone matrix components by modified Titanium implant surfaces.citations
- 2011Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells.citations
- 2011In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes.citations
- 2011Ag-Doped Sol-Gel Derived Novel Composite Materials for Dental Applicationscitations
- 2011Effect of deposition parameters and post-deposition annealing on the morphology and cellular response of electrosprayed TiO2 films.citations
- 2010Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.citations
- 2010<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cellscitations
- 2010Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.citations
- 2010Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives.citations
- 2009Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility.citations
- 2009Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment.citations
- 2009Development of remineralizing, antibacterial dental materials.citations
- 2009In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).citations
- 2008Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro.citations
- 2008Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.citations
- 2006Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition.citations
- 2006Initial responses of human osteoblasts to sol–gel modified titanium with hydroxyapatite and titania composition
- 2005Biocompatible phosphate glass fibre scaffolds
- 2005Soluble phosphate glass fibres for repair of bone-ligament interface.citations
- 2004Physicochemical, mechanical, and biological properties of bone cements prepared with functionalized methacrylatescitations
- 2002The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system.citations
Places of action
Organizations | Location | People |
---|
article
Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives.
Abstract
The initial structure, setting and degradation processes of a poly(lactide-co-propylene glycol-co-lactide) dimethacrylate adhesive filled with 50, 60 or 70 wt.% reactive calcium phosphates (monocalcium phosphate monohydrate (MCPM)/beta-tricalcium phosphate (beta-TCP)) have been assessed using nuclear magnetic resonance, Fourier transform infrared spectroscopy, Raman, X-ray powder diffraction and gravimetric studies. Filler incorporation reduced the rapid light-activated monomer polymerization rates slightly, but not the final levels. Upon immersion in water for 24h, the set composite mass and volume increased due to water sorption. This promoted initial soluble MCPM loss from the composite surfaces, but also its reaction and monetite precipitation within the specimen bulk. After 48 h, composite gravimetric and chemical studies were consistent with surface erosion of polymer with reacted/remaining filler. The filled formulations exhibited more rapid early water sorption and subsequent surface erosion than the unfilled polymer. Calcium and phosphate release profiles and solution pH measurements confirmed early loss of surface MCPM with protons from polymer degradation products. At later times, the slower release of monetite/beta-TCP buffered composite storage solutions at approximately 5 instead of 3.2 for the unfilled polymer. Incorporation of filler increased both the early and later time material modulus. At intermediate times this effect was lost, presumably as a result of enhanced water sorption. The early modulus values obtained fell within the range reported for cancellous bone. Despite surface degradation, initial human mesenchymal cell attachment to both composites and polymer could be comparable with a non-degrading positive Thermanox control. These studies indicate that the filled formulations may be good candidates for bone repair. Release of calcium and phosphate ions provides components essential for such repair.