People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Salih, Vehid
University of Plymouth
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2016Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3‐hydroxybutyrate) and micro‐fibrillated bacterial cellulosecitations
- 2016P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineeringcitations
- 2015Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expressioncitations
- 2012Titanium-containing bioactive phosphate glasses.citations
- 2012Osteochondral tissue engineering: scaffolds, stem cells and applications.citations
- 2012Structural characterization and physical properties of P2O5-CaO-Na2O-TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies.citations
- 2012Titanium phosphate glass microspheres for bone tissue engineering.citations
- 2012The enhanced modulation of key bone matrix components by modified Titanium implant surfaces.citations
- 2011Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells.citations
- 2011In vitro evaluation of 45S5 Bioglass®-derived glass-ceramic scaffolds coated with carbon nanotubes.citations
- 2011Ag-Doped Sol-Gel Derived Novel Composite Materials for Dental Applicationscitations
- 2011Effect of deposition parameters and post-deposition annealing on the morphology and cellular response of electrosprayed TiO2 films.citations
- 2010Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.citations
- 2010<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cellscitations
- 2010Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.citations
- 2010Chemical, modulus and cell attachment studies of reactive calcium phosphate filler-containing fast photo-curing, surface-degrading, polymeric bone adhesives.citations
- 2009Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility.citations
- 2009Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment.citations
- 2009Development of remineralizing, antibacterial dental materials.citations
- 2009In vitro biocompatibility of 45S5 Bioglass-derived glass-ceramic scaffolds coated with poly(3-hydroxybutyrate).citations
- 2008Bioglass-derived glass-ceramic scaffolds: study of cell proliferation and scaffold degradation in vitro.citations
- 2008Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.citations
- 2006Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition.citations
- 2006Initial responses of human osteoblasts to sol–gel modified titanium with hydroxyapatite and titania composition
- 2005Biocompatible phosphate glass fibre scaffolds
- 2005Soluble phosphate glass fibres for repair of bone-ligament interface.citations
- 2004Physicochemical, mechanical, and biological properties of bone cements prepared with functionalized methacrylatescitations
- 2002The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system.citations
Places of action
Organizations | Location | People |
---|
article
Development of remineralizing, antibacterial dental materials.
Abstract
Light curable methacrylate dental monomers containing reactive calcium phosphate filler (monocalcium phosphate monohydrate (MCPM) with particle diameter of 29 or 90microm) and beta-tricalcium phosphate (beta-TCP) at 1:1 weight ratio in a powder:liquid ratio (PLR) of 1:1 or 3:1 and chlorhexidine diacetate (0 or 5 wt.%), were investigated. Upon light exposure, approximately 90% monomer conversion was gained irrespective of the formulation. Increasing the PLR promoted water sorption by the set material, induced expansion and enhanced calcium, phosphate and chlorhexidine release. Concomitantly, a decline in compressive and biaxial flexural strengths occurred. With a reduction in MCPM particle diameter, however, calcium and phosphate release was reduced and less deterioration in strength observed. After 24h, the remaining MCPM had reacted with water and beta-TCP, forming, within the set materials, brushite of lower solubility. This provided a novel means to control water sorption, component release and strength properties. Measurable chlorhexidine release was observed for 6weeks. Both diffusion rate and total percentage of chlorhexidine release decreased with lowering PLR or by adding buffer to the storage solutions. Higher chlorhexidine release was associated with reduced bacterial growth on agar plates and in a biofilm fermenter. In cell growth media, brushite and hydroxyapatite crystals precipitated on the composite material surfaces. Cells spread on both these crystals and the exposed polymer composite surfaces, indicating their cell compatibility. These formulations could be suitable antibacterial, biocompatible and remineralizing dental adhesives/liners.