People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Knowles, Jonathan C.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (33/33 displayed)
- 2024Titanium-doped phosphate glasses containing zinc and strontium applied in bone regeneration
- 2024A sol-gel templating route for the synthesis of hierarchical porous calcium phosphate glasses containing zinccitations
- 20243D Melt-Extrusion Printing of Medium Chain Length Polyhydroxyalkanoates and Their Application as Antibiotic-Free Antibacterial Scaffolds for Bone Regenerationcitations
- 2023Biodegradable and Sustainable Synthetic Antibodies—A Perspective
- 2021Antibacterial Composite Materials Based on the Combination of Polyhydroxyalkanoates With Selenium and Strontium Co-substituted Hydroxyapatite for Bone Regenerationcitations
- 2020Modulation of neuronal cell affinity of composite scaffolds based on polyhydroxyalkanoates and bioactive glassescitations
- 2018Binary polyhydroxyalkanoate systems for soft tissue engineeringcitations
- 2016Composite scaffolds for cartilage tissue engineering based on natural polymers of bacterial origin, thermoplastic poly(3‐hydroxybutyrate) and micro‐fibrillated bacterial cellulosecitations
- 2016P(3HB) Based Magnetic Nanocomposites: Smart Materials for Bone Tissue Engineeringcitations
- 2015Novel sol–gel preparation of (P2O5)0.4–(CaO)0.25–(Na2O)X–(TiO2)(0.35−X) bioresorbable glasses (X = 0.05, 0.1, and 0.15)citations
- 2015Titanium phosphate glass microcarriers induce enhanced osteogenic cell proliferation and human mesenchymal stem cell protein expressioncitations
- 2013Aspirin-loaded P(3HO)/P(3HB) blend films: potential materials for biodegradable drug-eluting stentscitations
- 2012Novel Biodegradable and Biocompatible Poly(3‐hydroxyoctanoate)/Bacterial Cellulose Compositescitations
- 2012Structural characterization of titanium-doped Bioglass using isotopic substitution neutron diffractioncitations
- 2012Structural characterization and physical properties of P2O5-CaO-Na2O-TiO2 glasses by Fourier transform infrared, Raman and solid-state magic angle spinning nuclear magnetic resonance spectroscopies.citations
- 2012Titanium phosphate glass microspheres for bone tissue engineering.citations
- 2010Tailoring Cell Behavior on Polymers by the Incorporation of Titanium Doped Phosphate Glass Fillercitations
- 2010Poly(3-hydroxybutyrate) multifunctional composite scaffolds for tissue engineering applications.citations
- 2010<i>In vitro</i> studies on the influence of surface modification of Ni–Ti alloy on human bone cellscitations
- 2010Reactive calcium-phosphate-containing poly(ester-co-ether) methacrylate bone adhesives: chemical, mechanical and biological considerations.citations
- 2009A study of the formation of amorphous calcium phosphate and hydroxyapatite on melt quenched Bioglass(A (R)) using surface sensitive shallow angle X-ray diffractioncitations
- 2009Structure and properties of strontium-doped phosphate-based glassescitations
- 2009Incorporation of vitamin E in poly(3hydroxybutyrate)/Bioglass composite films: effect on surface properties and cell attachment.citations
- 2009Doping of a high calcium oxide metaphosphate glass with titanium dioxidecitations
- 2008Structural characteristics of antibacterial bioresorbable phosphate glasscitations
- 2008A high-energy X-ray diffraction, P-31 and B-11 solid-state NMR study of the structure of aged sodium borophosphate glassescitations
- 2008An X-ray absorption spectroscopy study of the local environment of iron in degradable iron-phosphate glassescitations
- 2008Comparison of nanoscale and microscale bioactive glass on the properties of P(3HB)/Bioglass composites.citations
- 2007The structure and properties of silver-doped phosphate-based glassescitations
- 2007The structure of phosphate glass biomaterials from neutron diffraction and 31P nuclear magnetic resonance datacitations
- 2006Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition.citations
- 2006X-ray absorption spectroscopy and high-energy XRD study of the local environment of copper in antibacterial copper-releasing degradable phosphate glassescitations
- 2006Initial responses of human osteoblasts to sol–gel modified titanium with hydroxyapatite and titania composition
Places of action
Organizations | Location | People |
---|
article
Initial responses of human osteoblasts to sol-gel modified titanium with hydroxyapatite and titania composition.
Abstract
Sol-gel thin films of hydroxyapatite (HA) and titania (TiO(2)) have received a great deal of attention in the area of bioactive surface modification of titanium (Ti) implants. Sol-gel coatings were developed on Ti substrates of pure HA and TiO(2) and two composite forms, HA+10% TiO(2) and HA+20% TiO(2), and the biological properties of the coatings were evaluated. All the coating layers exhibited thin and homogeneous structures and phase-pure compositions (either HA or TiO(2)). Primary human osteoblast cells showed good attachment, spreading and proliferation on all the sol-gel coated surfaces, with enhanced cell numbers on all the coated surfaces relative to uncoated Ti control at day 1, as observed by MTT assay and scanning electron microscopy. Cell attachment rates were also enhanced on the pure HA coating relative to control Ti. The pure HA and HA+10% TiO(2) composite coating furthermore enhanced proliferation of osteoblasts at 4 days. Moreover, the gene expression level of several osteogenic markers including bone sialoprotein and osteopontin, as measured by RT-PCR at 24h, was shown to vary according to coating composition. These findings suggest that human primary bone cells show marked and rapid early functional changes in response to HA and TiO(2) sol-gel coatings on Ti.