Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Milov, Igor

  • Google
  • 5
  • 75
  • 43

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024Structural pathways for ultrafast melting of optically excited thin polycrystalline Palladium films4citations
  • 2024Structural pathways for ultrafast melting of optically excited thin polycrystalline Palladium films4citations
  • 2018Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single-shot ablation threshold8citations
  • 2018Damage accumulation in thin ruthenium films induced by repetitive exposure to femtosecond XUV pulses below the single-shot ablation threshold8citations
  • 2018Experimental study of EUV mirror radiation damage resistance under long-term free-electron laser exposures below the single-shot damage threshold19citations

Places of action

Chart of shared publication
Olczak, Adam
2 / 2 shared
Bressler, Christian
2 / 10 shared
Chojnacki, Michał
2 / 4 shared
Sokolowski-Tinten, Klaus
2 / 5 shared
Georgarakis, Konstantinos
2 / 27 shared
Chapman, Henry N.
2 / 4 shared
Zalden, Peter
2 / 10 shared
Dzięgielewski, Przemysław
2 / 2 shared
Gawełda, Wojciech
2 / 2 shared
Rodriguez-Fernandez, Angel
2 / 4 shared
Fronc, Krzysztof
2 / 3 shared
Dłużewski, Piotr
2 / 3 shared
Antonowicz, Jerzy
2 / 7 shared
Chart of publication period
2024
2018

Co-Authors (by relevance)

  • Olczak, Adam
  • Bressler, Christian
  • Chojnacki, Michał
  • Sokolowski-Tinten, Klaus
  • Georgarakis, Konstantinos
  • Chapman, Henry N.
  • Zalden, Peter
  • Dzięgielewski, Przemysław
  • Gawełda, Wojciech
  • Rodriguez-Fernandez, Angel
  • Fronc, Krzysztof
  • Dłużewski, Piotr
  • Antonowicz, Jerzy
OrganizationsLocationPeople

article

Structural pathways for ultrafast melting of optically excited thin polycrystalline Palladium films

  • Olczak, Adam
  • Sun, Peihao
  • Bressler, Christian
  • Chojnacki, Michał
  • Van De Kruijs, Robbert
  • Sokolowski-Tinten, Klaus
  • Georgarakis, Konstantinos
  • Kamiński, Radosław
  • Chapman, Henry N.
  • Greer, Alan L.
  • Zalden, Peter
  • Minikayev, Roman
  • Dzięgielewski, Przemysław
  • Zhakhovsky, Vasily V.
  • Gawełda, Wojciech
  • Yousef, Hazem
  • Jacyna, Iwanna
  • Sobierajski, Ryszard
  • Panagiotopoulos, Nikolaos T.
  • Rodriguez-Fernandez, Angel
  • Khakhulin, Dmitry
  • Kubicek, Katharina
  • Sikora, Marcin
  • Klinger, Dorota
  • Fronc, Krzysztof
  • Milov, Igor
  • Migdal, Kirill P.
  • Kosyl, Katarzyna M.
  • Dłużewski, Piotr
  • Antonowicz, Jerzy
  • Zajkowska-Pietrzak, Wiktoria
Abstract

<p>Due to its extremely short timescale, the non-equilibrium melting of metals is exceptionally difficult to probe experimentally. The knowledge of melting mechanisms is thus based mainly on the results of theoretical predictions. This work reports on the investigation of ultrafast melting of thin polycrystalline Pd films studied by optical laser pump – X-ray free-electron laser probe experiments and molecular-dynamics simulations. By acquiring X-ray diffraction snapshots with sub-picosecond resolution, we capture the sample's atomic structure during its transition from the crystalline to the liquid state. Bridging the timescales of experiments and simulations allows us to formulate a realistic microscopic picture of the crystal-liquid transition. According to the experimental data, the melting process gradually accelerates with the increasing density of deposited energy. The molecular dynamics simulations reveal that the transition mechanism progressively varies from heterogeneous, initiated inside the material at structurally disordered grain boundaries, to homogenous, proceeding catastrophically in the crystal volume on a picosecond timescale comparable to that of electron-phonon coupling. We demonstrate that the existing models of strongly non-equilibrium melting, developed for systems with relatively weak electron-phonon coupling, remain valid even for ultrafast heating rates achieved in femtosecond laser-excited Pd. Furthermore, we highlight the role of pre-existing and transiently generated crystal defects in the transition to the liquid state.</p>

Topics
  • density
  • impedance spectroscopy
  • grain
  • x-ray diffraction
  • experiment
  • simulation
  • molecular dynamics
  • defect
  • palladium