People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Jørgensen, Peter Stanley
Technical University of Denmark
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (23/23 displayed)
- 2024Elucidating Nickel Oxide Reduction in a Ni-YSZ Solid Oxide Cell via in-situ X-ray Nano Holo-Tomographycitations
- 2024Elucidating Nickel Oxide Reduction in a Ni-YSZ Solid Oxide Cell via in-situ X-ray Nano Holo-Tomographycitations
- 2017A Physically-Based Equivalent Circuit Model for the Impedance of a LiFePO 4 /Graphite 26650 Cylindrical Cellcitations
- 2017A Physically-Based Equivalent Circuit Model for the Impedance of a LiFePO4/Graphite 26650 Cylindrical Cellcitations
- 2017Enhanced densification of thin tape cast Ceria-Gadolinium Oxide (CGO) layers by rheological optimization of slurriescitations
- 2016Electron microscopy investigations of changes in morphology and conductivity of LiFePO4/C electrodescitations
- 2016Relaxation of stresses during reduction of anode supported SOFCs
- 2015Dictionary Based Segmentation in Volumescitations
- 2015Computation of Effective Steady-State Creep of Porous Ni–YSZ Composites with Reconstructed Microstructurescitations
- 2014Degradation Studies on LiFePO 4 cathode
- 2014On the accuracy of triple phase boundary lengths calculated from tomographic image datacitations
- 2014Degradation Studies on LiFePO4 cathode
- 2014In situ characterization of delamination and crack growth of a CGO–LSM multi-layer ceramic sample investigated by X-ray tomographic microscopycitations
- 2014Micromechanical Modeling of Solid Oxide Fuel Cell Anode Supports based on Three-dimensional Reconstructions
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2013Transmission Electron Microscopy Specimen Preparation Method for Multiphase Porous Functional Ceramicscitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Performance-Microstructure Relations in Ni/CGO Infiltrated Nb-doped SrTiO3 SOFC Anodescitations
- 2012Microstructural evolution of nanosized Ce 0.8 Gd 0.2 O 1.9 /Ni infiltrate in a Zr 0.84 Y 0.16 O 1.92 -Sr 0.94 Ti 0.9 Nb 0.1 O 3-δ based SOFC anode under electrochemical evaluation
- 2012Durable and Robust Solid Oxide Fuel Cells
- 2012Microstructural evolution of nanosized Ce0.8Gd0.2O1.9/Ni infiltrate in a Zr0.84Y0.16O1.92-Sr0.94Ti0.9Nb0.1O3-δ based SOFC anode under electrochemical evaluation
- 2010Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells
- 2010Quantitative data analysis methods for 3D microstructure characterization of Solid Oxide Cells
Places of action
Organizations | Location | People |
---|
article
Elucidating Nickel Oxide Reduction in a Ni-YSZ Solid Oxide Cell via in-situ X-ray Nano Holo-Tomography
Abstract
Reducing nickel oxide in solid oxide cell (SOC) electrodes is a critical step during the early stages of cell operation. It is considered crucial in shaping the final microstructure of the fuel electrode. In this work, we investigate the NiO reduction process in a state-of-the-art Solid Oxide Cell (SOC) using<i> in-situ</i> X-ray nano-holo-tomography. Results show a fast reaction kinetics and a reaction front from the outer to the inner regions of the sample. NiO reduction is complete in the first few seconds and the metallic Ni particles present a sponge-like structure, with many nanocrystallites and internal nano porosity. After reduction, the Ni network undergoes coarsening, increasing its particle size. Based on the acquired data, we propose a new chain of reaction mechanisms for forming the Ni nanocrystallites observed after reduction.