Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kern, Maximilian

  • Google
  • 5
  • 14
  • 54

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (5/5 displayed)

  • 2024In situ study and assessment of the phosphorus-induced solute drag effect on the grain boundary mobility of austenite11citations
  • 2024On the Role of Tramp Elements for Surface Defect Formation in Continuous Casting of Steel3citations
  • 2024Critical Examination of the Representativeness of Austenite Grain Growth Studies Performed In Situ Using HT-LSCM and Application to Determine Growth-inhibiting Mechanisms6citations
  • 2023Grain boundary mobility of γ-Fe in high-purity iron during isothermal annealing20citations
  • 2023Decomposition of γ-Fe in 0.4C-1.8Si-2.8Mn-0.5Al steel during a continuous cooling process: A comparative study using in-situ HT-LSCM, DSC and dilatometry14citations

Places of action

Chart of shared publication
Kang, Youn-Bae
4 / 9 shared
Bernhard, Christian
5 / 53 shared
Bernhard, Michael Christian
5 / 18 shared
Winkler, Johann
1 / 2 shared
Presoly, Peter
3 / 25 shared
Gaiser, Georg
1 / 4 shared
Brandl, Dominik
1 / 7 shared
Liu, Man
1 / 1 shared
Walek, Josef
1 / 2 shared
Kawulokova, Monika
1 / 1 shared
Smetana, Bedřich
1 / 14 shared
Xu, Guang
1 / 4 shared
Tkadleckova, Marketa
1 / 1 shared
Zla, Simona
1 / 1 shared
Chart of publication period
2024
2023

Co-Authors (by relevance)

  • Kang, Youn-Bae
  • Bernhard, Christian
  • Bernhard, Michael Christian
  • Winkler, Johann
  • Presoly, Peter
  • Gaiser, Georg
  • Brandl, Dominik
  • Liu, Man
  • Walek, Josef
  • Kawulokova, Monika
  • Smetana, Bedřich
  • Xu, Guang
  • Tkadleckova, Marketa
  • Zla, Simona
OrganizationsLocationPeople

article

In situ study and assessment of the phosphorus-induced solute drag effect on the grain boundary mobility of austenite

  • Kang, Youn-Bae
  • Kern, Maximilian
  • Bernhard, Christian
  • Bernhard, Michael Christian
Abstract

The solute drag effect of phosphorus (P) in the single-phase austenite (γ-Fe) region was studied under isothermal annealing conditions at temperatures of 1050 °C, 1150 °C, 1250 °C and 1350 °C. High-temperature laser scanning confocal microscopy (HT-LSCM) was used to observe and quantify in situ grain growth on the surface of three different samples containing 0.026 wt.-% P, 0.044 wt.-% P and 0.102 wt.-% P. The dependence of the arithmetic mean grain sizes on time and temperature were modeled mathematically using a simple ordinary differential equation (ODE) according to normal grain growth (NGG) theory. As no other major effects, i.e., Zener-pinning by precipitates, occurred under the selected experimental conditions, grain growth interference was only considered by grain boundary (GB) segregation of P. Thus, the total grain boundary mobility (M) was directly determined depending on the P content and isothermal annealing temperature. The fitted GB mobility values enabled the determination of an average binding energy value between impurity P atoms and grain boundaries (E0 = -1.1 - -0.6 eV) in the system. Finally, the GB segregation of P in γ-Fe was derived from the observed grain growth kinetics. The results showed reasonable agreement with calculations using segregation enthalpies from the literature.

Topics
  • surface
  • grain
  • grain size
  • phase
  • mobility
  • grain boundary
  • theory
  • precipitate
  • annealing
  • Phosphorus
  • grain growth
  • confocal microscopy