People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Djurabekova, Flyura Gatifovna
University of Helsinki
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Solubility of Hydrogen in a WMoTaNbV High-Entropy Alloycitations
- 2024Unveiling the radiation-induced defect production and damage evolution in tungsten using multi-energy Rutherford backscattering spectroscopy in channeling configurationcitations
- 2023Roadmap for focused ion beam technologiescitations
- 2022Biased self-diffusion on Cu surface due to electric field gradientscitations
- 2022Microscopy Investigation on Different Materials After Pulsed High Field Conditioning and Low Energy H-Irradiation
- 2022Simple machine-learned interatomic potentials for complex alloyscitations
- 2021Temperature effect on irradiation damage in equiatomic multi-component alloyscitations
- 2021Origin of increased helium density inside bubbles in Ni(1-x)Fex alloyscitations
- 2021Modeling refractory high-entropy alloys with efficient machine-learned interatomic potentialscitations
- 2021Machine-learning interatomic potential for W-Mo alloyscitations
- 2020Segregation of Ni at early stages of radiation damage in NiCoFeCr solid solution alloyscitations
- 2020Insights into the primary radiation damage of silicon by a machine learning interatomic potentialcitations
- 2020Application of artificial neural networks for rigid lattice kinetic Monte Carlo studies of Cu surface diffusioncitations
- 2020Tungsten migration energy barriers for surface diffusioncitations
- 2019Ab initio calculation of field emission from metal surfaces with atomic-scale defectscitations
- 2019Atomic-level heterogeneity and defect dynamics in concentrated solid-solution alloyscitations
- 2019Structural properties of protective diamond-like-carbon thin films grown on multilayer graphenecitations
- 2019Radiation stability of nanocrystalline single-phase multicomponent alloyscitations
- 2018Absence of single critical dose for the amorphization of quartz under ion irradiationcitations
- 2018Simulations of surface stress effects in nanoscale single crystalscitations
- 2018Migration barriers for surface diffusion on a rigid latticecitations
- 2018Au nanowire junction breakup through surface atom diffusioncitations
- 2017Probing electron beam effects with chemoresistive nanosensors during in situ environmental transmission electron microscopycitations
- 2017Local segregation versus irradiation effects in high-entropy alloyscitations
- 2017Thermal Oxidation of Size-Selected Pd Nanoparticles Supported on CuO Nanowirescitations
- 2016Atomistic modeling of metal surfaces under high electric fieldscitations
- 2016Ru/Al Multilayers Integrate Maximum Energy Density and Ductility for Reactive Materialscitations
- 2016Dependence of short and intermediate-range order on preparation in experimental and modeled pure a-Sicitations
- 2016Long-term stability of Cu surface nanotipscitations
- 2015The as-deposited structure of co-sputtered Cu-Ta alloys, studied by X-ray diffraction and molecular dynamics simulationscitations
- 2015Surface segregation in chromium-doped NiCr alloy nanoparticles and its effect on their magnetic behaviorcitations
- 2015Ion-solid interactions at the extremes of electronic energy losscitations
- 2015Modification of Pt/Co/Pt film properties by ion irradiationcitations
- 2014Effect of ion irradiation on structural properties of Cu64Zr36 metallic glasscitations
- 2013Radiation effects in nuclear materialscitations
- 2009Amorphization of Ge nanocrystals embedded in amorphous silica under ion irradiationcitations
- 2008Atomistic simulation of the interface structure of Si nanocrystals embedded in amorphous silicacitations
Places of action
Organizations | Location | People |
---|
article
Unveiling the radiation-induced defect production and damage evolution in tungsten using multi-energy Rutherford backscattering spectroscopy in channeling configuration
Abstract
<p>Radiation-induced defect production in tungsten was studied by a combination of experimental and simulation methods. The analysis of structural defects was performed using multi-energy Rutherford backscattering spectroscopy in channeling configuration (multi-energy C-RBS). To create different microstructures, (111) tungsten (W) single crystals were irradiated with W ions at two different doses (0.02 and 0.2 dpa) at 290 K. Detailed transmission electron microscopy (TEM) analysis of the samples revealed the presence of dislocation lines and loops of different sizes. The RBSADEC code was used to simulate the measured C-RBS spectra, recorded with four different He beam energies along the 〈111〉 direction. For the first time for tungsten, molecular dynamics (MD) simulations of overlapping cascades were used as input. The well-known method of randomly displaced atoms (RDA) was applied for comparison. RDA does not provide a satisfactory understanding of the nature of the induced defect structure. With MD, a very good agreement between the simulated and experimental spectra was obtained for the sample prepared at a lower dose, despite the fact that the absolute defect densities are two orders of magnitude higher than those found with TEM. A discrepancy is observed for the high-dose-irradiated sample, which is ascribed to the presence of extended defects such as dislocation lines, which are clearly observed by TEM, but cannot be formed in finite size MD cells. RBSADEC with MD cells as input can describe correctly the response of the RBS signal with analysing beam energy while RDA as input gives the wrong trend.</p>