People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Klein, Thomas
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (28/28 displayed)
- 2024Investigation of complex single-walled intersecting structures fabricated by wire-arc directed energy depositioncitations
- 2024Residual Stresses in a Wire and Arc-Directed Energy-Deposited Al–6Cu–Mn (ER2319) Alloy Determined by Energy-Dispersive High-Energy X-ray Diffractioncitations
- 2024Demonstration of the Fabrication of a Large-Scale Aluminum Structure by Wire-Arc Directed Energy Deposition Using a Novel Aluminum Alloycitations
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Novel Magnesium Nanocomposite for Wire-Arc Directed Energy Deposition
- 2024Physical Simulation of microstructures generated by wire-arc directed energy deposition
- 2023Effect of wire-arc directed energy deposition on the microstructural formation and age-hardening response of the Mg-9Al-1Zn (AZ91) alloycitations
- 2023Wire arc additive manufacturing of light metals: From experimental investigation to numerical process simulation and microstructural modelingcitations
- 2023Effects on Microstructure and Mechanical Properties of the Addition of Co, Cr, and Fe to the Eutectoid System Ti-6.5Cu
- 2023Effects of Fe and Al additions on the eutectoid transformation and its transformation products in Ti-5.9(wt.%)Cu
- 2023High-temperature microstructure evolution of an advanced intermetallic nano-lamellar γ-TiAl-based alloy and associated diffusion processescitations
- 2023High-temperature microstructure evolution of an advanced intermetallic nano-lamellar γ-TiAl-based alloy and associated diffusion processescitations
- 2023Titanium MMCs With Enhanced Specific Young’s Modulus via Powder Hot Extrusion
- 2023Microstructure and Mechanical Properties of an Advanced Ag-Microalloyed Aluminum Crossover Alloy Tailored for Wire-Arc Directed Energy Depositioncitations
- 2022Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratio: An in situ SAXS and HEXRD studycitations
- 2022Characterisation of structural modifications on cold-formed AA2024 substrates by wire arc additive manufacturingcitations
- 2022Quench rate sensitivity of age-hardenable Al-Zn-Mg-Cu alloys with respect to the Zn/Mg ratiocitations
- 2022Drahtbasierte additive Fertigung der Luftfahrtlegierung AA2024
- 2021Microstructure evolution induced by the intrinsic heat treatment occurring during wire-arc additive manufacturing of an Al-Mg-Zn-Cu crossover alloycitations
- 2020High-temperature phenomena in an advanced intermetallic nano-lamellar γ-TiAl-based alloy. Part Icitations
- 2020An Advanced TiAl Alloy for High-Performance Racing Applicationscitations
- 2019The creep behavior of a fully lamellar γ-TiAl based alloycitations
- 2019In situ and atomic-scale investigations of the early stages of γ precipitate growth in a supersaturated intermetallic Ti-44Al-7Mo (at.%) solid solutioncitations
- 2019Formation of "carbide-free zones" resulting from the interplay of C redistribution and carbide precipitation during bainitic transformationcitations
- 2018Intermetallicscitations
- 2016Advancement of Compositional and Microstructural Design of Intermetallic γ-TiAl Based Alloys Determined by Atom Probe Tomographycitations
- 2015Carbon distribution in multi-phase γ-TiAl based alloys and its influence on mechanical properties and phase formationcitations
- 2014Distribution of alloying elements within the constituent phases of a C-containing gamma-TiAl based alloy studied by atom probe tomographycitations
Places of action
Organizations | Location | People |
---|
article
High-temperature microstructure evolution of an advanced intermetallic nano-lamellar γ-TiAl-based alloy and associated diffusion processes
Abstract
Nano-lamellar advanced γ-TiAl based alloys doped with small amounts of C and Si are being developed to improve the creep resistance in order to increase the performances of this kind of alloys applied in the low-pressure turbine of aircraft engines. In order to extend the service temperature up to 1073 K or even above, the control of the microstructure stability is key. In this work, a complete study of the microstructure evolution during high-temperature exposure up to 1153 K has been approached through different electron microscopy techniques including HRTEM and HRSTEM with microanalysis. The nucleation and growth of the ordered βo precipitates and the ζ silicides inside the α2 lamellae has been carefully characterized and new orientation relationships and the misfit between all crystalline lattices has been determined, as well as the chemical concentration of the different atomic species on each phase. The electron microscopy study shows that βo and ζ precipitates inside α2 prevents or retards the dissolution of the α2 lamellae and its final disintegration in favor of the γ lamellae. This phenomenon has been discussed in terms of the phase coherence and diffusion processes. These important results allow conclude that the coarsening of the γ lamellae is delayed because of the βo and ζ precipitation, allowing to explain the observed enhancement of the creep resistance in this γ-TiAl based alloy exhibiting a nano-lamellar microstructure.