Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Ferreirós, Pedro A.

  • Google
  • 16
  • 48
  • 126

VTT Technical Research Centre of Finland

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (16/16 displayed)

  • 2024Effects of surface finishes, heat treatments and printing orientations on stress corrosion cracking behavior of laser powder bed fusion 316L stainless steel in high-temperature water8citations
  • 2023Microstructure Evolution by Thermomechanical Processing in the Fe-10Al-12V Superalloycitations
  • 2023VNbCrMo refractory high-entropy alloy for nuclear applications16citations
  • 2023Chromium-based bcc-superalloys strengthened by iron supplements19citations
  • 2022Influence of precipitate and grain sizes on the brittle-to-ductile transition in Fe–Al–V bcc-L21 ferritic superalloys9citations
  • 2022Study of Microstructure, Hydrogen Solubility, and Corrosion of Ta-Modified Zr–1Nb Alloys for Nuclear Applications2citations
  • 2021Effects of thermo-mechanical process on phase transitions, hydrogen solubility and corrosion of Ta-modified Zr-1Nb alloys2citations
  • 2020Accurate quantitative EDS-TEM analysis of precipitates and matrix in equilibrium (α+β) Zr–1Nb alloys with Ta addition7citations
  • 2019Effect of Ti additions on phase transitions, lattice misfit, coarsening, and hardening mechanisms in a Fe2AlV-strengthened ferritic alloy17citations
  • 2018Método innovador de ensayos de impacto en altas temperaturas aplicado en aceros al carbonocitations
  • 2018High-temperature testing in a Charpy impact pendulum using in-situ Joule heating of the specimen5citations
  • 2018Zirconium alloys with improved corrosion resistance and service temperature for use in the fuel cladding and core structural parts of a nuclear reactorcitations
  • 2018Efecto de la sustitución de V por Ti sobre las temperaturas de transformación de fase y el desajuste de red matriz/precipitado en la superaleación 76Fe-12Al-12Vcitations
  • 2017Impact toughness transition temperature of ferritic Fe-Al-V alloy with strengthening Fe2AlV precipitates6citations
  • 2017Coarsening process and precipitation hardening in Fe2AlV-strengthened ferritic Fe76Al12V12 alloy19citations
  • 2014Characterization of microstructures and age hardening of Fe 1-2xAlxVx alloys16citations

Places of action

Chart of shared publication
Revuelta, Alejandro
1 / 17 shared
Ikäläinen, Tiina
1 / 5 shared
Que, Zaiqing
1 / 39 shared
Goel, Sneha
1 / 17 shared
Sipilä, Konsta
1 / 20 shared
Riipinen, Tuomas
1 / 20 shared
Toivonen, Aki
1 / 60 shared
Saario, Timo
1 / 62 shared
Rubiolo, Gerardo H.
1 / 1 shared
Bolmaro, Raúl
1 / 3 shared
Becerra, Abraham A.
1 / 1 shared
Ávalos, Martina C.
1 / 1 shared
Sterin, Uriel A.
1 / 1 shared
Parkes, N.
1 / 3 shared
Gurah, D.
1 / 2 shared
Knowles, A. J.
3 / 9 shared
Tiedemann, S. O. Von
1 / 1 shared
Gilbert, M. R.
1 / 6 shared
King, D. J. M.
1 / 4 shared
Norman, P.
1 / 2 shared
Kerbstadt, Michael
1 / 1 shared
Magnussen, Jp
1 / 1 shared
Ma, Kan
1 / 6 shared
Knowles, Alexander J.
1 / 8 shared
Moody, Mp
1 / 32 shared
Bagot, Paul A. J.
1 / 15 shared
Hofer, Christina
1 / 18 shared
Galetz, Mc
1 / 1 shared
Day, Sj
1 / 4 shared
Pinomaa, Tatu
1 / 38 shared
Hopkinson, Dg
1 / 2 shared
Blackburn, Thomas
1 / 1 shared
Rubiolo, G. H.
9 / 15 shared
Sterin, U. A.
1 / 2 shared
Alonso, P. R.
9 / 15 shared
Mieza, J. I.
2 / 3 shared
Polack, E. C. Savoy
2 / 3 shared
Lanzani, L. A.
2 / 3 shared
Quirós, D. P.
3 / 3 shared
Zelaya, E.
2 / 3 shared
Alonso, Paula Regina
2 / 3 shared
Rubiolo, Gerardo Héctor
2 / 2 shared
Gargano, P. H.
2 / 3 shared
Vega, Daniel Roberto
1 / 1 shared
Gomez, G. R.
1 / 2 shared
Troiani, H. E.
1 / 2 shared
Bozzano, P. B.
1 / 2 shared
Baruj, A.
1 / 4 shared
Chart of publication period
2024
2023
2022
2021
2020
2019
2018
2017
2014

Co-Authors (by relevance)

  • Revuelta, Alejandro
  • Ikäläinen, Tiina
  • Que, Zaiqing
  • Goel, Sneha
  • Sipilä, Konsta
  • Riipinen, Tuomas
  • Toivonen, Aki
  • Saario, Timo
  • Rubiolo, Gerardo H.
  • Bolmaro, Raúl
  • Becerra, Abraham A.
  • Ávalos, Martina C.
  • Sterin, Uriel A.
  • Parkes, N.
  • Gurah, D.
  • Knowles, A. J.
  • Tiedemann, S. O. Von
  • Gilbert, M. R.
  • King, D. J. M.
  • Norman, P.
  • Kerbstadt, Michael
  • Magnussen, Jp
  • Ma, Kan
  • Knowles, Alexander J.
  • Moody, Mp
  • Bagot, Paul A. J.
  • Hofer, Christina
  • Galetz, Mc
  • Day, Sj
  • Pinomaa, Tatu
  • Hopkinson, Dg
  • Blackburn, Thomas
  • Rubiolo, G. H.
  • Sterin, U. A.
  • Alonso, P. R.
  • Mieza, J. I.
  • Polack, E. C. Savoy
  • Lanzani, L. A.
  • Quirós, D. P.
  • Zelaya, E.
  • Alonso, Paula Regina
  • Rubiolo, Gerardo Héctor
  • Gargano, P. H.
  • Vega, Daniel Roberto
  • Gomez, G. R.
  • Troiani, H. E.
  • Bozzano, P. B.
  • Baruj, A.
OrganizationsLocationPeople

article

Chromium-based bcc-superalloys strengthened by iron supplements

  • Kerbstadt, Michael
  • Magnussen, Jp
  • Ma, Kan
  • Knowles, Alexander J.
  • Moody, Mp
  • Ferreirós, Pedro A.
  • Bagot, Paul A. J.
  • Hofer, Christina
  • Galetz, Mc
  • Day, Sj
  • Pinomaa, Tatu
  • Hopkinson, Dg
  • Blackburn, Thomas
Abstract

Chromium alloys are being considered for next-generation concentrated solar power applications operating > 800 °C. Cr offers advantages in melting point, cost, and oxidation resistance. However, improvements in mechanical performance are needed. Here, Cr-based body-centred-cubic (bcc) alloys of the type Cr(Fe)-NiAl are investigated, leading to ‘bcc-superalloys’ comprising a bcc-Cr(Fe) matrix (β) strengthened by ordered-bcc NiAl intermetallic precipitates (β’), with iron additions to tailor the precipitate volume fraction and mechanical properties at high temperatures. Computational design using CALculation of PHAse Diagram (CALPHAD) predicts that Fe increases the solubility of Ni and Al, increasing precipitate volume fraction, which is validated experimentally. Nano-scale, highly-coherent B2-NiAl precipitates with lattice misfit ∼ 0.1% are formed in the Cr(Fe) matrix. The Cr(Fe)-NiAl A2-B2 alloys show remarkably low coarsening rate (∼102 nm3/h at 1000 °C), outperforming ferritic-superalloys, cobalt- and nickel-based superalloys. Low interfacial energies of ∼ 40/20 mJ/m2 at 1000/1200 °C are determined based on the coarsening kinetics. The low coarsening rates are principally attributed to the low solubility of Ni and Al in the Cr matrix. The alloys show high compressive yield strength of ∼320 MPa at 1000 °C. The Fe-modified alloy exhibits resistance to age softening, related to the low coarsening rate as well as the relatively stable Orowan strengthening as a function of precipitate radius. Microstructure tailoring with Fe additions offers a new design route to improve the balance of properties in “Cr-superalloys”, accelerating their development as a new class of high-temperature materials.

Topics
  • impedance spectroscopy
  • nickel
  • chromium
  • phase
  • strength
  • precipitate
  • cobalt
  • electron microscopy
  • iron
  • yield strength
  • intermetallic
  • interfacial
  • phase diagram
  • superalloy
  • CALPHAD
  • chromium alloy