People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weißensteiner, Irmgard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Effect of cold rolling route and annealing on the microstructure and mechanical properties of AISI 316 L stainless steelcitations
- 2024Impact of Surface Microstructure and Properties of Aluminum Electrodes on the Plating/Stripping Behavior of Aluminum-Based Batteries Using Imidazolium-Based Electrolyte
- 2023Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloyscitations
- 2023Unveiling the strengthening mechanisms of as-cast micro-alloyed CrMnFeCoNi high-entropy alloyscitations
- 2023Precipitation behavior of hexagonal carbides in a C containing intermetallic γ-TiAl based alloycitations
- 2023Fine-grained aluminium crossover alloy for high-temperature sheet formingcitations
- 2022High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical propertiescitations
- 2022Mitigating the detrimental effects of galvanic corrosion by nanoscale composite architecture designcitations
- 2021Synergistic alloy design concept for new high-strength Al–Mg–Si thick plate alloyscitations
- 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texturecitations
- 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part I: Evolution of Primary and Secondary Phasescitations
- 2020Evolution of microstructure and texture in laboratory- and industrial-scaled production of automotive Al-sheetscitations
- 2020Mg-alloys for forging applications-A reviewcitations
- 2020Mechanism of low temperature deformation in aluminium alloyscitations
- 2019Deformation-induced phase transformation in a Co-Cr-W-Mo alloy studied by high-energy X-ray diffraction during in-situ compression testscitations
Places of action
Organizations | Location | People |
---|
article
Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloys
Abstract
This study introduces new alloys, which combine the age-hardening capability of Al-Mg-Si alloys with the microstructure-controlling effect on processing of primary Fe-rich intermetallic phases used in foil stock. In detail, the processing and microstructure–property relations in new crossover aluminum alloys derived from 6xxx and 8xxx foil stock alloys, is shown. A highly Fe-rich intermetallic phase content was deployed to conceptually mimic high scrap content. Fast and slow solidification rates were applied to represent thin strip and direct chill casting, respectively. The effects of adding Fe and Mn to alloy 6016 were examined, while the Si consumed in primary phases was partly adjusted to maintain age-hardening potential. It was shown that upon thermomechanical processing, primary intermetallic phases in the new alloys are finely fragmented and well dispersed, resulting in strong grain refinement and a uniform texture. Attractive combinations of strength and ductility were revealed, also in material processed under direct chill casting conditions. The new alloys’ high elongation values of up to 30%, and their age-hardening response, were similar to those seen in commercial alloy 6016, while their strain hardening capacity was significantly greater. This can be attributed mainly to the formation of geometrically necessary dislocations near primary Fe-rich intermetallic phases. The study discusses microstructure refinement on the basis of particle stimulated nucleation. It uses a simple model to describe the individual contributions to yield strength, including the effect of primary phases. It also models the effect of these particles on increased strain hardening and ductility.