People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Weißensteiner, Irmgard
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (15/15 displayed)
- 2024Effect of cold rolling route and annealing on the microstructure and mechanical properties of AISI 316 L stainless steelcitations
- 2024Impact of Surface Microstructure and Properties of Aluminum Electrodes on the Plating/Stripping Behavior of Aluminum-Based Batteries Using Imidazolium-Based Electrolyte
- 2023Processing and microstructure–property relations of Al-Mg-Si-Fe crossover alloyscitations
- 2023Unveiling the strengthening mechanisms of as-cast micro-alloyed CrMnFeCoNi high-entropy alloyscitations
- 2023Precipitation behavior of hexagonal carbides in a C containing intermetallic γ-TiAl based alloycitations
- 2023Fine-grained aluminium crossover alloy for high-temperature sheet formingcitations
- 2022High Fe content in Al-Mg-Si wrought alloys facilitates excellent mechanical propertiescitations
- 2022Mitigating the detrimental effects of galvanic corrosion by nanoscale composite architecture designcitations
- 2021Synergistic alloy design concept for new high-strength Al–Mg–Si thick plate alloyscitations
- 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part II: Evolution of Grain Size and Texturecitations
- 2021Influence of Fe and Mn on the Microstructure Formation in 5xxx Alloys—Part I: Evolution of Primary and Secondary Phasescitations
- 2020Evolution of microstructure and texture in laboratory- and industrial-scaled production of automotive Al-sheetscitations
- 2020Mg-alloys for forging applications-A reviewcitations
- 2020Mechanism of low temperature deformation in aluminium alloyscitations
- 2019Deformation-induced phase transformation in a Co-Cr-W-Mo alloy studied by high-energy X-ray diffraction during in-situ compression testscitations
Places of action
Organizations | Location | People |
---|
article
Fine-grained aluminium crossover alloy for high-temperature sheet forming
Abstract
This study presents age-hardenable, fine-grained AlMgZnCu crossover alloys intended for superplastic and quick plastic forming processes. The study utilizes T-phase (Mg32(Al,Zn)49) for both grain refinement and age-hardening. It deploys a uniform distribution of µm-sized T-phase particles, which can be dissolved upon final solution annealing, and which is utilized for heavy particle stimulated nucleation (PSN) during industrial processing of sheets, in order to reach an equiaxed grain size as low as 4 µm. This fine grain size is advantageous for high-temperature forming of aluminium alloys. Elongations above 200% and 400% are achieved when deformed at strain rates of 10−2 s−1 or 5*10−5 s−1 at 470 °C, and interestingly, the fine grain structure is highly stable even when held at that temperature for one day. Moreover, the material reached yield strength values of more than 380 MPa after a paint-bake heat treatment for quenching in water or compressed air. The study demonstrates the importance of PSN using electron microscopic and texture measurements and describes it by simple modelling of T-phase particle grain refinement. It explores the high stability of the fine grain assembly in terms of the random grain boundary misorientation distribution in combination with high solute content observed, provided via the dissolved T-phase, and Smith-Zener pinning. The simple, commercially available grain refinement strategy demonstrated using the dissolvable T-phase, and the resulting unique property profile, make the crossover alloy in question a promising candidate for high-temperature sheet forming processes.