Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Kainz, Christina

  • Google
  • 9
  • 26
  • 71

Montanuniversität Leoben

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (9/9 displayed)

  • 2023Oxidation behavior of a cathodic arc evaporated Cr$_{0.69}$Ta$_{0.20}$B$_{0.11}$N coatingcitations
  • 2023Deformation and failure behavior of nanocrystalline WCu5citations
  • 2023Oxidation behavior of a cathodic arc evaporated Cr<sub>0.69</sub>Ta<sub>0.20</sub>B<sub>0.11</sub>N coatingcitations
  • 2023Precipitation behaviour in AlMgZnCuAg crossover alloy with coarse and ultrafine grains8citations
  • 2023Fine-grained aluminium crossover alloy for high-temperature sheet forming27citations
  • 2022In situ micromechanical analysis of a nano-crystalline W-Cu composite10citations
  • 2022Oxidation resistance of cathodic arc evaporated Cr$_{0.74}$Ta$_{0.26}$N coatings5citations
  • 2021Deviating from the pure MAX phase concept: Radiation-tolerant nanostructured dual-phase Cr2AlCcitations
  • 2020Microstructure, mechanical and thermo-physical properties of CVD TiCxN1-x coatings on cemented carbide substrates grown with C2H6 as C feeding precursor16citations

Places of action

Chart of shared publication
Letofsky-Papst, Ilse
2 / 17 shared
Schell, Norbert
3 / 180 shared
Czettl, Christoph
4 / 13 shared
Saringer, Christian
3 / 6 shared
Krüger, Hannes
2 / 4 shared
Pohler, Markus
3 / 4 shared
Stark, Andreas
3 / 148 shared
Burtscher, Michael
3 / 14 shared
Kiener, Daniel
3 / 39 shared
Alfreider, Markus
2 / 21 shared
Gneiger, Stefan
1 / 14 shared
Pogatscher, Stefan
3 / 61 shared
Renk, Oliver
1 / 15 shared
Willenshofer, Patrick
1 / 4 shared
Kremmer, Thomas
1 / 17 shared
Tunes, Matheus Araujo
2 / 34 shared
Uggowitzer, Peter J.
2 / 62 shared
Stemper, Lukas
1 / 12 shared
Samberger, Sebastian
1 / 7 shared
Weißensteiner, Irmgard
1 / 15 shared
Schmuck, Klemens Silvester
1 / 3 shared
Schalk, Nina
2 / 9 shared
Tkadletz, Michael
2 / 14 shared
Imtyazuddin, Mohammed
1 / 2 shared
Vishnyakov, Vladimir M.
1 / 4 shared
Winkler, Markus
1 / 8 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Letofsky-Papst, Ilse
  • Schell, Norbert
  • Czettl, Christoph
  • Saringer, Christian
  • Krüger, Hannes
  • Pohler, Markus
  • Stark, Andreas
  • Burtscher, Michael
  • Kiener, Daniel
  • Alfreider, Markus
  • Gneiger, Stefan
  • Pogatscher, Stefan
  • Renk, Oliver
  • Willenshofer, Patrick
  • Kremmer, Thomas
  • Tunes, Matheus Araujo
  • Uggowitzer, Peter J.
  • Stemper, Lukas
  • Samberger, Sebastian
  • Weißensteiner, Irmgard
  • Schmuck, Klemens Silvester
  • Schalk, Nina
  • Tkadletz, Michael
  • Imtyazuddin, Mohammed
  • Vishnyakov, Vladimir M.
  • Winkler, Markus
OrganizationsLocationPeople

article

Fine-grained aluminium crossover alloy for high-temperature sheet forming

  • Stemper, Lukas
  • Kainz, Christina
  • Pogatscher, Stefan
  • Samberger, Sebastian
  • Weißensteiner, Irmgard
  • Uggowitzer, Peter J.
Abstract

This study presents age-hardenable, fine-grained AlMgZnCu crossover alloys intended for superplastic and quick plastic forming processes. The study utilizes T-phase (Mg32(Al,Zn)49) for both grain refinement and age-hardening. It deploys a uniform distribution of µm-sized T-phase particles, which can be dissolved upon final solution annealing, and which is utilized for heavy particle stimulated nucleation (PSN) during industrial processing of sheets, in order to reach an equiaxed grain size as low as 4 µm. This fine grain size is advantageous for high-temperature forming of aluminium alloys. Elongations above 200% and 400% are achieved when deformed at strain rates of 10−2 s−1 or 5*10−5 s−1 at 470 °C, and interestingly, the fine grain structure is highly stable even when held at that temperature for one day. Moreover, the material reached yield strength values of more than 380 MPa after a paint-bake heat treatment for quenching in water or compressed air. The study demonstrates the importance of PSN using electron microscopic and texture measurements and describes it by simple modelling of T-phase particle grain refinement. It explores the high stability of the fine grain assembly in terms of the random grain boundary misorientation distribution in combination with high solute content observed, provided via the dissolved T-phase, and Smith-Zener pinning. The simple, commercially available grain refinement strategy demonstrated using the dissolvable T-phase, and the resulting unique property profile, make the crossover alloy in question a promising candidate for high-temperature sheet forming processes.

Topics
  • impedance spectroscopy
  • polymer
  • grain
  • grain size
  • phase
  • grain boundary
  • aluminium
  • strength
  • aluminium alloy
  • texture
  • forming
  • annealing
  • random
  • yield strength
  • quenching