People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Robson, Joseph D.
University of Manchester
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (19/19 displayed)
- 2023Mitigation effects of over-aging (T73) induced intergranular corrosion on stress corrosion cracking of AA7075 aluminum alloy and behaviors of η phase grain boundary precipitates during the intergranular corrosion formationcitations
- 2023Mapping Plastic Deformation Mechanisms in AZ31 Magnesium Alloy at the Nanoscalecitations
- 2023LaserbeamFoam: Laser Ray-Tracing and Thermally Induced State Transition Simulation Toolkitcitations
- 2023Interactions between plastic deformation and precipitation in Aluminium alloys: A crystal plasticity modelcitations
- 2022Modelling dynamic precipitation in pre-aged aluminium alloys under warm forming conditionscitations
- 2022Simulating intergranular hydrogen enhanced decohesion in aluminium using density functional theorycitations
- 2021Preageing of Magnesium Alloyscitations
- 2020Friction stir welding/processing of metals and alloys: A comprehensive review on microstructural evolutioncitations
- 2019Reducing yield asymmetry and anisotropy in wrought magnesium alloys – a comparative studycitations
- 2019The Effect of Precipitates on Twinning in Magnesium Alloyscitations
- 2018Numerical simulation of grain boundary carbides evolution in 316H stainless steelcitations
- 2017How magnesium accommodates local deformation incompatibility: a high-resolution digital image correlation studycitations
- 2016Process Optimization of Dual-Laser Beam Welding of Advanced Al-Li Alloys Through Hot Cracking Susceptibility Modelingcitations
- 2015Compositional variations for small-scale gamma prime (γ′) precipitates formed at different cooling rates in an advanced Ni-based superalloycitations
- 2015Grain Boundary Segregation of Rare-Earth Elements in Magnesium Alloyscitations
- 2014Contribution of twinning to low strain deformation in a Mg alloycitations
- 2013Constituent particles and dispersoids in an Al-Mn-Fe-Si alloy studied in three-dimensions by serial sectioningcitations
- 2013The effectiveness of surface coatings on preventing interfacial reaction during ultrasonic welding of aluminum to magnesiumcitations
- 2009Determination and interpretation of texture evolution during deformation of a zirconium alloy
Places of action
Organizations | Location | People |
---|
article
Interactions between plastic deformation and precipitation in Aluminium alloys: A crystal plasticity model
Abstract
This work presents a crystal plasticity model for dynamic precipitation in aluminium alloys. It takes into account both the influence of an evolving precipitate distribution on the critical stress for dislocation glide, and the accelerating effect of deformation on precipitation kinetics. The effect of precipitates on deformation behaviour is integrated into the crystal plasticity constitutive law. The effect of deformation on precipitation kinetics is modelled spatio-temporally using a multi-class precipitation kinetic model (KWN) incorporating the effect of deformation through accelerated solute diffusion caused by the production of excess vacancies. The model is applied to growth and coarsening of shearable precipitates in pre-aged AA7075 alloy under deformation at 150°C, which corresponds to an industrially relevant production. This paper first explores the influence of dynamic precipitation on the tensile behaviour, showing that dynamic precipitation might be responsible for a gain in uniform elongation and tensile stress of respectively 2% strain and 50 MPa for the case at hand. The influence of dynamic precipitation on the development of plastic strain heterogeneities is discussed. The model demonstrates how spatial heterogeneities in precipitate distribution may develop during deformation, and how these heterogeneities correlate with the development of strain heterogeneities. The precipitate distributions obtained under static or dynamic ageing are predicted and compared with each other, and the influence of texture is discussed.