Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Laithy, Mostafa El

  • Google
  • 4
  • 6
  • 73

University of Southampton

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (4/4 displayed)

  • 2023Mechanistic study of dark etching regions in bearing steels due to rolling contact fatigue16citations
  • 2022White etching bands formation mechanisms due to rolling contact fatigue24citations
  • 2021Semi-empirical model for predicting LAB and HAB formation in bearing steels7citations
  • 2020Re-investigation of dark etching regions and white etching bands in SAE 52100 bearing steel due to rolling contact fatigue26citations

Places of action

Chart of shared publication
Wang, Ling
4 / 32 shared
Vierneusel, Bernd
4 / 9 shared
Harvey, Terence
4 / 12 shared
Schwedt, Alexander
2 / 15 shared
Mayer, Joachim
1 / 30 shared
Meyer, Joachim
1 / 2 shared
Chart of publication period
2023
2022
2021
2020

Co-Authors (by relevance)

  • Wang, Ling
  • Vierneusel, Bernd
  • Harvey, Terence
  • Schwedt, Alexander
  • Mayer, Joachim
  • Meyer, Joachim
OrganizationsLocationPeople

article

Mechanistic study of dark etching regions in bearing steels due to rolling contact fatigue

  • Wang, Ling
  • Vierneusel, Bernd
  • Laithy, Mostafa El
  • Harvey, Terence
  • Schwedt, Alexander
  • Mayer, Joachim
Abstract

<p>Dark etching region (DER) formation is the first stage of a series of subsurface microstructural alterations induced by cyclic stresses during rolling contact fatigue in bearing steels followed by the formation of low angle bands (LAB) and high angle bands (HAB). A unified formation mechanism for LAB and HAB development in bearing steels has been proposed as a series of energy build-up and release in a recent study. This paper presents the development of DER through the analysis of two different steel, 100Cr6 and 50CrMo4, at various stages in the lifetime of bearings using SEM, EBSD and nanoindentation. It is found that early stages of DER consist of patches of multiple dark etching bands orientated at three distinct orientations relative to the rolling direction. As the dark etching bands grow in density, they contribute to the refinement of the parent microstructure through fragmentation of martensite laths. The fragmentation as well as intersections of dark etching bands lead to the creation of stress points within the region that become nucleation sites for the formation of equiaxed ferrite grains through recrystallization, which has been found to be the initiation stage of LAB. Hence this study establishes a link between DER and LAB/HAB development in rolling bearings.</p>

Topics
  • density
  • impedance spectroscopy
  • grain
  • scanning electron microscopy
  • steel
  • fatigue
  • nanoindentation
  • etching
  • electron backscatter diffraction
  • recrystallization