People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Dumitraschkewitz, Phillip
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (10/10 displayed)
- 2024Unraveling the potential of Cu addition and cluster hardening in Al-Mg-Si alloyscitations
- 2023In situ transmission electron microscopy as a toolbox for the emerging science of nanometallurgycitations
- 2023Fast differential scanning calorimetry to mimic additive manufacturing processing: specific heat capacity analysis of aluminium alloyscitations
- 2023Strain-induced clustering in Al alloyscitations
- 2022MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cucitations
- 2021Giant hardening response in AlMgZn(Cu) alloyscitations
- 2020Microstructural Change during the Interrupted Quenching of the AlZnMg(Cu) Alloy AA7050citations
- 2019Size-dependent diffusion controls natural aging in aluminium alloyscitations
- 2017Impact of Alloying on Stacking Fault Energies in γ-TiAlcitations
- 2016Analysis of initial clustering in Al-Mg-Si alloys via atom probe tomography
Places of action
Organizations | Location | People |
---|
article
MEMS-Based in situ electron-microscopy investigation of rapid solidification and heat treatment on eutectic Al-Cu
Abstract
The solidification behavior of a eutectic AlCu specimen is investigated via in situ scanning transmission electron microscope (STEM) experiments. Solidification conditions are varied by imposing various cooling conditions via a micro-electro-mechanical system (MEMS) based membrane. The methodology allows the use of material processed by a melting and casting route close to industrial metallurgically fabricated ma- terial for in situ STEM solidification studies. Different rapid solidification morphologies could be obtained solely on a single specimen by the demonstrated strategy. Additional post-solidification heat treatments are investigated in terms of observation of spheroidization of lamellas during annealing at elevated tem- peratures.