People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Alfreider, Markus
Montanuniversität Leoben
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (21/21 displayed)
- 2024Stabilization of mechanical strength in a nanocrystalline CoCrNi concentrated alloy by nitrogen alloying
- 2024Micro-Mechanical Fracture Investigations on Grain Size Tailored Tungsten-Copper Nanocompositescitations
- 2024Automatic and time-resolved determination of fracture characteristics from in situ experimentscitations
- 2023Deformation and failure behavior of nanocrystalline WCucitations
- 2023Magnetic Properties of a High-Pressure Torsion Deformed Co-Zr Alloycitations
- 2023Revealing the nano-scale mechanisms of the limited non-basal plasticity in magnesium
- 2023Nanoscale printed tunable specimen geometry enables high-throughput miniaturized fracture testingcitations
- 2022In situ micromechanical analysis of a nano-crystalline W-Cu compositecitations
- 2022Interface mediated deformation and fracture of an elastic–plastic bimaterial system resolved by in situ transmission scanning electron microscopycitations
- 2022The influence of chemistry on the interface toughness in a WTi-Cu systemcitations
- 2021Prospects of Using Small Scale Testing to Examine Different Deformation Mechanisms in Nanoscale Single Crystals—A Case Study in Mgcitations
- 2021Extracting information from noisy data: strain mapping during dynamic in situ SEM experimentscitations
- 2020Correlation between fracture characteristics and valence electron concentration of sputtered Hf-C-N based thin filmscitations
- 2020In situ fracture observations of distinct interface types within a fully lamellar intermetallic TiAl alloycitations
- 2020Probing defect relaxation in ultra-fine grained Ta using micromechanical spectroscopycitations
- 2019Bioinspired nacre-like alumina with a bulk-metallic glass-forming alloy as a compliant phasecitations
- 2019Rate limiting deformation mechanisms of bcc metals in confined volumescitations
- 2018In-situ elastic-plastic fracture mechanics on the microscale by means of continuous dynamical testingcitations
- 2018In-situ TEM observation of {101¯2} twin-dominated deformation of Mg pillarscitations
- 2017The influence of deformation and proton-irradiation on the mechanical behaviour in nano-crystalline stainless steels
- 2016Synthesis and Mechanical Characterisation of an Ultra-Fine Grained Ti-Mg Compositecitations
Places of action
Organizations | Location | People |
---|
article
The influence of chemistry on the interface toughness in a WTi-Cu system
Abstract
With a considerable amount of commonly used material systems consisting of individual, rather confined layers, the question for mechanical behaviour of their individual interfaces arises. Especially, when considering varying interfacial structures as a result of the processing environment. Furthermore, the interaction between pronounced plasticity and fracture processes can lead to challenges with regards to separation between sole interface- or bulk properties.<br/><br/>The present work investigates the interfacial fracture characteristic of a WTi-Cu sytem commonly found in the microelectronics industry as a heterogeneous model material with pronounced plasticity in the Cu phase. To study this behaviour on a rather limited scale (<6 µm), microcantilever experiments were conducted and evaluated using a continuous J-Δa curve evaluation scheme with classical elastic-plastic considerations in mind. A change in interface chemistry, resulting from air exposure between processing steps, was probed and found to show distinct crack propagation along the interface opposed to crack tip blunting as encountered in the vacuum processed sample. Complementary density functional theory calculations also showed a strong reduction of interface cohesion upon oxygen accumulation and a model framework based on classical dislocation plasticity considerations revealed the transition from plasticity to fracture processes to be a result of shielding and following change in mode mixity.