People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Thomas, Rhys
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (37/37 displayed)
- 2024Quantifying cracking and strain localisation in a cold spray chromium coating on a zirconium alloy substrate under tensile loading at room temperaturecitations
- 2024Quantifying cracking and strain localisation in a cold spray chromium coating on a zirconium alloy substrate under tensile loading at room temperaturecitations
- 2024Identification, classification and characterisation of hydrides in Zr alloyscitations
- 2024Identification, classification and characterisation of hydrides in Zr alloys
- 2024Fractional densities and character of dislocations in different slip modes from powder diffraction patternscitations
- 2024Fractional densities and character of dislocations in different slip modes from powder diffraction patternscitations
- 2024Development of novel carbon-free cobalt-free iron-based hardfacing alloys with a hard π-ferrosilicide phase
- 2024Development of novel carbon-free cobalt-free iron-based hardfacing alloys with a hard π-ferrosilicide phase
- 2023Characterization of Irradiation Damage Using X-Ray Diffraction Line-Profile Analysiscitations
- 2023Characterization of Irradiation Damage Using X-Ray Diffraction Line-Profile Analysiscitations
- 2023Exploring the hydride-slip interaction in zirconium alloyscitations
- 2023Characterization of Hydride Precipitation and Reorientation in Zircaloy-4 at Different Metallurgical States
- 2023The role of hydrides and precipitates on the strain localisation behaviour in a zirconium alloycitations
- 2023Dislocation density transients and saturation in irradiated zirconiumcitations
- 2023Dislocation density transients and saturation in irradiated zirconiumcitations
- 2022Investigating Irradiation Creep of Zircaloy-4 Using In-Situ Proton Irradiation and Transmission Electron Microscopy
- 2022Multi-dimensional study of the effect of early slip activity on fatigue crack initiation in a near-α titanium alloycitations
- 2022A novel method for radial hydride analysis in zirconium alloys:HAPPycitations
- 2022A novel method for radial hydride analysis in zirconium alloyscitations
- 2022Optimising large-area crystal orientation mapping of nanoscale β phase in α + β titanium alloys using EBSDcitations
- 2022Simulation of crystal plasticity in irradiated metals: a case study on Zircaloy-4citations
- 2022CHARACTERISATION OF HYDRIDE PRECIPITATION AND REORIENTATION IN ZIRCALOY-4 AT DIFFERENT METALLURGICAL STATES
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2022Slip activity during low-stress cold creep deformation in a near-α titanium alloycitations
- 2021The Effect of Loading Direction on Slip and Twinning in an Irradiated Zirconium Alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2021Understanding the role of local texture variation on slip activity in a two-phase titanium alloycitations
- 2020Comparison of sub-grain scale digital image correlation calculated using commercial and open-source software packagescitations
- 2020Understanding strain localisation behaviour in a near-α Ti-alloy during initial loading below the yield stress
- 2020Early slip activity and fatigue crack initiation of a near alpha titanium alloycitations
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Characterisation of irradiation enhanced strain localisation in a zirconium alloycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Identification of active slip mode in a hexagonal material by correlative scanning electron microscopycitations
- 2019Data for: Characterisation of irradiation enhanced strain localisation in a zirconium alloy
- 2018Enabling high resolution strain mapping in zirconium alloyscitations
- 2018Enabling high resolution strain mapping in zirconium alloyscitations
Places of action
Organizations | Location | People |
---|
article
Slip activity during low-stress cold creep deformation in a near-α titanium alloy
Abstract
Near-α titanium alloys are known to be susceptible to cold dwell fatigue (CDF) debit, which has been linked to the occurrence of cold creep during high-load dwell times superimposed onto low cycle fatigue loading. In order to shed new light on the deformation mechanisms during cold dwell and to understand better the role of the microstructure, two different bimodal microstructures (fine and coarse transformation product) of TIMETAL®834 were investigated at stress levels below the 0.2% proof stress using a combination of grain orientation mapping and in-situ electron microscopy imaging. This enabled in-depth analysis of 2D slip patterns and slip system activity using High-Resolution Digital Image Correlation (HRDIC), showing that in both microstructures basal slip is initially the dominant slip mode before prismatic slip activity increases approaching the 0.2% proof stress. Comparing the two constituents in the bimodal microstructure, first slip bands are localised predominantly in primary α grains, indicating higher strength of secondary α colonies, particularly for finer transformation products. During 10-minute load holds at stresses below 0.2% proof stress, more plastic strain and longer connected slip traces across several grains were observed in the sample with coarse transformation product, indicating higher susceptibility to cold creep deformation. Full-field crystal deformation modelling was utilised to determine local stresses in individual grains at the onset of plasticity and test the hypothesis that the dominance of basal slip at low-stress levels can be explained by the elastic anisotropy in Ti alloys. However, while consideration of elastic anisotropy <br/>increased resolved shear stress (RSS) values for basal slip relative to prismatic slip, it did not unambiguously explain the early activation of basal slip. Furthermore, thermal residual stresses at the crystal level, due to the anisotropy of coefficients of thermal expansion (CTE), were included in the simulation, which created a wider spread of the RSS data but did not preferentially promote high RSS values for grains well aligned for basal slip. In the absence of an unambiguous conclusion, it is hypothesised that basal slip might display lower critical resolved shear stress values than typically reported but highwork hardening rates compared to prismatic slip.