People | Locations | Statistics |
---|---|---|
Naji, M. |
| |
Motta, Antonella |
| |
Aletan, Dirar |
| |
Mohamed, Tarek |
| |
Ertürk, Emre |
| |
Taccardi, Nicola |
| |
Kononenko, Denys |
| |
Petrov, R. H. | Madrid |
|
Alshaaer, Mazen | Brussels |
|
Bih, L. |
| |
Casati, R. |
| |
Muller, Hermance |
| |
Kočí, Jan | Prague |
|
Šuljagić, Marija |
| |
Kalteremidou, Kalliopi-Artemi | Brussels |
|
Azam, Siraj |
| |
Ospanova, Alyiya |
| |
Blanpain, Bart |
| |
Ali, M. A. |
| |
Popa, V. |
| |
Rančić, M. |
| |
Ollier, Nadège |
| |
Azevedo, Nuno Monteiro |
| |
Landes, Michael |
| |
Rignanese, Gian-Marco |
|
Davis, Alec E.
in Cooperation with on an Cooperation-Score of 37%
Topics
Publications (24/24 displayed)
- 2024Achieving a columnar-to-equiaxed transition through dendrite twinning in high deposition rate additively manufactured titanium alloyscitations
- 2024Grain-scale in-situ study of discontinuous precipitation in Mg-Alcitations
- 2024Understanding fatigue crack propagation pathways in Additively Manufactured AlSi10Mgcitations
- 2024In-Situ EBSD Study of Austenitisation in a Wire-Arc Additively Manufactured High-Strength Steelcitations
- 2024Identification, classification and characterisation of hydrides in Zr alloyscitations
- 2023β grain refinement during solidification of Ti-6Al-4V in Wire-Arc Additive Manufacturing (WAAM)citations
- 2022β Grain refinement by yttrium addition in Ti-6Al-4V Wire-Arc Additive Manufacturingcitations
- 2022Comparison of microstructure refinement in wire-arc additively manufactured Ti–6Al–2Sn–4Zr–2Mo–0.1Si and Ti–6Al–4V built with inter-pass deformationcitations
- 2022Microstructural characterisation and mechanical properties of Ti-5Al-5V-5Mo-3Cr built by wire and arc additive manufacturecitations
- 2022Optimising large-area crystal orientation mapping of nanoscale β phase in α + β titanium alloys using EBSDcitations
- 2022CALPHAD-informed phase-field model for two-sublattice phases based on chemical potentials: η-phase precipitation in Al-Zn-Mg-Cu alloyscitations
- 2021β Grain refinement by yttrium addition in Ti-6Al-4V Wire-Arc Additive Manufacturingcitations
- 2021The potential for grain refinement of wire-arc additive manufactured (WAAM) Ti-6Al-4V by ZrN and TiN inoculationcitations
- 2021Effect of deposition strategies on fatigue crack growth behaviour of wire+ arc additive manufactured titanium alloy Ti-6Al-4Vcitations
- 2021Preageing of Magnesium Alloyscitations
- 2021In-Situ Observation of Single Variant α Colony Formation in Ti-6Al-4Vcitations
- 2021The Potential for Grain Refinement of Wire-Arc Additive Manufactured (WAAM) Ti-6Al-4V by ZrN and TiN Inoculationcitations
- 2021Microstructure transition gradients in titanium dissimilar alloy (Ti-5Al-5V-5Mo-3Cr/Ti-6Al-4V) tailored wire-arc additively manufactured componentscitations
- 2020The effect of processing parameters on rapid-heating β recrystallization in inter-pass deformed Ti-6Al-4V wire-arc additive manufacturingcitations
- 2020On the observation of annealing twins during simulating β-grain refinement in Ti–6Al–4V high deposition rate AM with in-process deformationcitations
- 2019Reducing yield asymmetry and anisotropy in wrought magnesium alloys – a comparative studycitations
- 2019Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacturecitations
- 2019Mechanical performance and microstructural characterisation of titanium alloy-alloy composites built by wire-arc additive manufacturecitations
- 2019Automated Image Mapping and Quantification of Microstructure Heterogeneity in Additive Manufactured Ti6Al4Vcitations
Places of action
Organizations | Location | People |
---|
article
CALPHAD-informed phase-field model for two-sublattice phases based on chemical potentials: η-phase precipitation in Al-Zn-Mg-Cu alloys
Abstract
The electrochemical properties of high strength 7xxx aluminium alloys strongly depend on the substitutional occupancy of Zn by Cu and Al in the strengthening η-phase with the two-sublattice structure, and its microstructural and compositional prediction is the key to design of new generation corrosion resistant alloys. In this work, we have developed a chemical-potential-based phase-field model capable of describing multi-component and two-sublattice ordered phases, during commercial multi-stage artificial ageing treatments, by directly incorporating the compound energy CALPHAD formalism. The model developed has been employed to explore the complex compositional pathway for the formation of the η-phase in Al-Zn-Mg-Cu alloys during heat treatments. In particular, the influence of alloy composition, solute diffusivity, and heat treatment parameters on the microstructural and compositional evolution of η-phase precipitates, was systematically investigated from a thermodynamic and kinetic perspective and compared to electron probe microanalysis validation data. The simulated η-phase growth kinetics and the matrix residual solute evolution in the AA7050 alloy indicates that Zn depletion mainly controlled the η-phase growth process during the early stage of ageing, resulting in fast η-phase growth kinetics, enrichment of Zn in the η-phase, and an excess in residual Cu in the matrix. The gradual substitution of Zn by Cu atoms in the η-phase during the later ageing stage was in principle a kinetically controlled process, owing to the slower diffusivity of Cu relative to Zn in the matrix. It was also found that the higher nominal Zn content in alloys like the AA7085 alloy, compared to the AA7050 alloy, could significantly enhance the chemical potential of Zn, but this had a minor influence on Cu, which essentially led to the higher Zn content (and consequently lower Cu) seen in the η-phase. Finally, substantial depletion of Zn and supersaturation of Cu in the matrix of the AA7050 alloy was predicted after 24 h ageing at ...