Materials Map

Discover the materials research landscape. Find experts, partners, networks.

  • About
  • Privacy Policy
  • Legal Notice
  • Contact

The Materials Map is an open tool for improving networking and interdisciplinary exchange within materials research. It enables cross-database search for cooperation and network partners and discovering of the research landscape.

The dashboard provides detailed information about the selected scientist, e.g. publications. The dashboard can be filtered and shows the relationship to co-authors in different diagrams. In addition, a link is provided to find contact information.

×

Materials Map under construction

The Materials Map is still under development. In its current state, it is only based on one single data source and, thus, incomplete and contains duplicates. We are working on incorporating new open data sources like ORCID to improve the quality and the timeliness of our data. We will update Materials Map as soon as possible and kindly ask for your patience.

To Graph

1.080 Topics available

To Map

977 Locations available

693.932 PEOPLE
693.932 People People

693.932 People

Show results for 693.932 people that are selected by your search filters.

←

Page 1 of 27758

→
←

Page 1 of 0

→
PeopleLocationsStatistics
Naji, M.
  • 2
  • 13
  • 3
  • 2025
Motta, Antonella
  • 8
  • 52
  • 159
  • 2025
Aletan, Dirar
  • 1
  • 1
  • 0
  • 2025
Mohamed, Tarek
  • 1
  • 7
  • 2
  • 2025
Ertürk, Emre
  • 2
  • 3
  • 0
  • 2025
Taccardi, Nicola
  • 9
  • 81
  • 75
  • 2025
Kononenko, Denys
  • 1
  • 8
  • 2
  • 2025
Petrov, R. H.Madrid
  • 46
  • 125
  • 1k
  • 2025
Alshaaer, MazenBrussels
  • 17
  • 31
  • 172
  • 2025
Bih, L.
  • 15
  • 44
  • 145
  • 2025
Casati, R.
  • 31
  • 86
  • 661
  • 2025
Muller, Hermance
  • 1
  • 11
  • 0
  • 2025
Kočí, JanPrague
  • 28
  • 34
  • 209
  • 2025
Šuljagić, Marija
  • 10
  • 33
  • 43
  • 2025
Kalteremidou, Kalliopi-ArtemiBrussels
  • 14
  • 22
  • 158
  • 2025
Azam, Siraj
  • 1
  • 3
  • 2
  • 2025
Ospanova, Alyiya
  • 1
  • 6
  • 0
  • 2025
Blanpain, Bart
  • 568
  • 653
  • 13k
  • 2025
Ali, M. A.
  • 7
  • 75
  • 187
  • 2025
Popa, V.
  • 5
  • 12
  • 45
  • 2025
Rančić, M.
  • 2
  • 13
  • 0
  • 2025
Ollier, Nadège
  • 28
  • 75
  • 239
  • 2025
Azevedo, Nuno Monteiro
  • 4
  • 8
  • 25
  • 2025
Landes, Michael
  • 1
  • 9
  • 2
  • 2025
Rignanese, Gian-Marco
  • 15
  • 98
  • 805
  • 2025

Navarro-López, Alfonso

  • Google
  • 7
  • 28
  • 167

Delft University of Technology

in Cooperation with on an Cooperation-Score of 37%

Topics

Publications (7/7 displayed)

  • 2021Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS17citations
  • 2021Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS17citations
  • 2020Furnace for in situ and simultaneous studies of nano-precipitates and phase transformations in steels by SANS and neutron diffraction4citations
  • 2020Evolution of the precipitate composition during annealing of vanadium micro-alloyed steels by in-situ SANS23citations
  • 2019Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels53citations
  • 2019Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steelscitations
  • 2019Interaction of precipitation with austenite-to-ferrite phase transformation in vanadium micro-alloyed steels53citations

Places of action

Chart of shared publication
Van Well, Ad A.
2 / 3 shared
Sietsma, Jilt
7 / 44 shared
Rijkenberg, Arjan
6 / 12 shared
Zhang, Xukai
1 / 7 shared
Geerlofs, Nico
2 / 3 shared
Dalgliesh, Robert M.
6 / 15 shared
Ioannidou, Chrysoula
6 / 9 shared
Pappas, Catherine
7 / 10 shared
Offerman, S. Erik
7 / 13 shared
Kooi, Bart
1 / 6 shared
Van Well, Ad
4 / 6 shared
Dalgliesh, R. M.
1 / 7 shared
Arechabaleta, Z.
1 / 2 shared
Verleg, M. N.
1 / 2 shared
Wal, E. M. Van Der
1 / 1 shared
Geerlofs, N.
1 / 3 shared
Oever, R. Van Den
1 / 1 shared
Ioannidou, C.
1 / 5 shared
Sykora, J.
1 / 2 shared
Akeroyd, F. A.
1 / 3 shared
Koelling, Sebastian
1 / 11 shared
Guenechea, Zaloa Arechabaleta
1 / 1 shared
Kölling, Sebastian
2 / 3 shared
Bliznuk, Vitaliy
2 / 16 shared
Well, Ad A. Van
1 / 2 shared
Arechabaleta, Zaloa
2 / 2 shared
Kölling, S. Sebastian
1 / 6 shared
Bliznuk, V.
1 / 4 shared
Chart of publication period
2021
2020
2019

Co-Authors (by relevance)

  • Van Well, Ad A.
  • Sietsma, Jilt
  • Rijkenberg, Arjan
  • Zhang, Xukai
  • Geerlofs, Nico
  • Dalgliesh, Robert M.
  • Ioannidou, Chrysoula
  • Pappas, Catherine
  • Offerman, S. Erik
  • Kooi, Bart
  • Van Well, Ad
  • Dalgliesh, R. M.
  • Arechabaleta, Z.
  • Verleg, M. N.
  • Wal, E. M. Van Der
  • Geerlofs, N.
  • Oever, R. Van Den
  • Ioannidou, C.
  • Sykora, J.
  • Akeroyd, F. A.
  • Koelling, Sebastian
  • Guenechea, Zaloa Arechabaleta
  • Kölling, Sebastian
  • Bliznuk, Vitaliy
  • Well, Ad A. Van
  • Arechabaleta, Zaloa
  • Kölling, S. Sebastian
  • Bliznuk, V.
OrganizationsLocationPeople

article

Phase-transformation and precipitation kinetics in vanadium micro-alloyed steels by in-situ, simultaneous neutron diffraction and SANS

  • Van Well, Ad
  • Sietsma, Jilt
  • Rijkenberg, Arjan
  • Geerlofs, Nico
  • Dalgliesh, Robert M.
  • Ioannidou, Chrysoula
  • Pappas, Catherine
  • Navarro-López, Alfonso
  • Offerman, S. Erik
Abstract

In-situ Neutron Diffraction and Small-Angle Neutron Scattering (SANS) are employed for the first time simultaneously in order to reveal the interaction between the austenite to ferrite phase transformation and the precipitation kinetics during isothermal annealing at 650 and at 700 °C in three steels with different vanadium (V) and carbon (C) concentrations. Austenite-to-ferrite phase transformation is observed in all three steels at both temperatures. The phase transformation is completed during a 10 h annealing treatment in all cases. The phase transformation is faster at 650 than at 700 °C for all alloys. Additions of vanadium and carbon to the steel composition cause a retardation of the phase transformation. The effect of each element is explained through its contribution to the Gibbs free energy dissipation. The austenite-to-ferrite phase transformation is found to initiate the vanadium carbide precipitation. Larger and fewer precipitates are detected at 700 than at 650 °C in all three steels, and a larger number density of precipitates is detected in the steel with higher concentrations of vanadium and carbon. After 10 h of annealing, the precipitated phase does not reach the equilibrium fraction as calculated by ThermoCalc. The external magnetic field applied during the experiments, necessary for the SANS measurements, causes a delay in the onset and time evolution of the austenite-to-ferrite phase transformation and consequently on the precipitation kinetics. ; Team Erik Offerman ; Team Kevin Rossi ; RST/Neutron and Positron Methods in Materials ; RID/TS/Instrumenten groep

Topics
  • density
  • impedance spectroscopy
  • Carbon
  • phase
  • experiment
  • carbide
  • steel
  • neutron diffraction
  • precipitate
  • precipitation
  • annealing
  • small-angle neutron scattering
  • vanadium